CodeQL JavaScript 数据流分析中手动修复缺失调用边的方法
在 JavaScript 安全分析中,CodeQL 是一个强大的静态分析工具,但有时会遇到调用边解析失败导致数据流中断的情况。本文将深入探讨如何通过自定义数据流规则来修复这类问题。
问题背景
在分析 JavaScript 代码时,CodeQL 的数据流跟踪可能会因为动态特性而中断。一个典型场景是当函数通过对象属性动态调用时,如示例中的 renamed.newfunc(userInput),CodeQL 可能无法自动解析到实际的 processInput 函数调用。
核心解决方案
CodeQL 提供了 isAdditionalFlowStep 谓词,允许分析人员手动添加数据流步骤。这个谓词接收两个数据流节点作为参数,当返回 true 时表示在这两个节点之间存在额外的数据流路径。
实现要点
-
识别未解析的调用节点:通过定义
UnresolvedCallNode类来捕获所有无法解析调用目标的节点。 -
定位目标函数:创建
DesiredFunctionNode类来精确定位我们希望连接的目标函数。 -
建立连接规则:在
isAdditionalFlowStep中,将未解析调用的参数节点与目标函数的参数节点关联起来。
完整实现示例
/**
* @kind path-problem
*/
import javascript
import semmle.javascript.dataflow.TaintTracking
import semmle.javascript.security.dataflow.CodeInjectionQuery
// 定义未解析的调用节点类
class UnresolvedCallNode extends DataFlow::InvokeNode {
UnresolvedCallNode() { not exists(this.getACallee()) }
}
// 定义目标函数节点类
class DesiredFunctionNode extends DataFlow::FunctionNode {
DesiredFunctionNode() { this.getName() = "processInput" }
}
module Config implements DataFlow::ConfigSig {
// 定义污染源
predicate isSource(DataFlow::Node source) {
exists(DataFlow::CallNode cn | cn.getCalleeName() = "get" and cn = source)
}
// 定义污染汇聚点
predicate isSink(DataFlow::Node sink) {
exists(DataFlow::CallNode callNode |
sink = callNode.getArgument(0) and
callNode.getCalleeName() = "execute"
)
}
// 自定义数据流步骤
predicate isAdditionalFlowStep(DataFlow::Node nodeFrom, DataFlow::Node nodeTo) {
exists(UnresolvedCallNode ca | ca.getAnArgument() = nodeFrom) and
exists(DesiredFunctionNode fn | fn.getAParameter() = nodeTo)
}
}
module Flow = TaintTracking::Global<Config>;
import Flow::PathGraph
from Flow::PathNode source, Flow::PathNode sink
where Flow::flowPath(source, sink)
select sink.getNode(), source, sink, ""
技术细节解析
-
节点类型识别:通过
not exists(this.getACallee())条件可以准确识别出所有无法解析调用目标的节点。 -
参数匹配:
ca.getAnArgument() = nodeFrom和fn.getAParameter() = nodeTo确保了我们只连接正确的参数位置。 -
类型安全:使用专门的类来限定节点范围,避免了过度匹配导致误报。
实际应用建议
-
精确匹配:在实际应用中,可能需要添加更多条件来确保匹配的精确性,如检查调用上下文等。
-
性能考量:自定义数据流步骤会增加分析开销,应尽量限制其适用范围。
-
组合使用:可以与其他分析技术如类型推断结合使用,提高分析的准确性。
通过这种方法,分析人员可以有效地弥补 CodeQL 在复杂 JavaScript 模式下的分析局限,提高安全检测的覆盖率。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00