NGBoost中早期停止机制对验证集处理的优化分析
2025-07-09 12:16:18作者:仰钰奇
早期停止机制与验证集处理的现状
NGBoost作为斯坦福ML Group开发的一个强大的梯度提升框架,在其实现中有一个值得注意的行为:当启用早期停止(early stopping)功能时,框架会自动将训练数据分割出一部分作为验证集,这一过程会覆盖用户显式传入的任何验证集数据(X_val和y_val)。
这一设计在标准使用场景下可能不会造成问题,但在需要进行回溯测试(backtesting)等特殊场景时,会导致不够透明且不符合逻辑的行为。特别是在处理样本权重(sample weights)的情况下,这种覆盖行为更加隐蔽。
问题根源分析
通过查看NGBoost源码中的partial_fit方法实现,可以发现问题的核心逻辑:
if self.early_stopping_rounds is not None:
    # 无论用户是否提供了验证集,都会执行数据分割
    if sample_weight is None:
        X, X_val, Y, Y_val = train_test_split(...)
    else:
        X, X_val, Y, Y_val, sample_weight, val_sample_weight = train_test_split(...)
这种实现方式直接忽略了用户可能已经精心准备的验证数据集,强制使用从训练集分割出的部分作为验证集。对于需要严格控制验证集构成的场景(如时间序列预测中的严格时间划分),这种行为会破坏实验的严谨性。
改进方案探讨
更合理的实现方式应该是首先检查用户是否已经提供了验证集,只有在用户没有提供验证集的情况下才执行自动分割:
if early_stopping_rounds is not None and (X_val is None or Y_val is None):
    if sample_weight is None:
        X, X_val, Y, Y_val = train_test_split(...)
    else:
        X, X_val, Y, Y_val, sample_weight, val_sample_weight = train_test_split(...)
这种改进后的逻辑既保留了早期停止的功能,又尊重了用户对验证集的控制权,使得框架行为更加透明和可预测。
样本权重的特殊考量
值得注意的是,样本权重在NGBoost中的作用有其特殊性:
- 样本权重会影响基学习器的训练过程
 - 样本权重会影响负对数似然(NLL)的计算
 - 但在计算Fisher信息矩阵时,样本权重会被抵消掉,因此不会影响自然梯度的计算
 
这种特性使得验证集样本权重的处理需要格外小心,当前的实现可能会无意中引入不一致的行为。
结论与最佳实践
对于NGBoost用户,在需要精确控制验证集的情况下,建议:
- 明确提供自己的验证集数据
 - 如果需要使用早期停止功能,可以考虑暂时禁用自动验证集分割(通过设置validation_fraction=0)
 - 对于关键实验,建议检查框架版本以确保验证集处理符合预期
 
对于框架开发者,这一问题的修复已经通过PR#372合并,建议用户升级到最新版本以获得更合理的行为。这一改进使得NGBoost在保持原有功能的同时,提供了更大的灵活性和透明度,特别是在需要严格控制实验设置的场景下。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445