TinyMist v0.13.0 版本发布:Typst生态的重要更新
TinyMist 是一个专注于 Typst 文档排版系统的工具链项目,它为 Typst 提供了强大的语言服务器、编译工具和编辑器集成支持。在最新发布的 v0.13.0 版本中,TinyMist 带来了多项重要更新,特别是对 Typst 0.13.0 新特性的支持以及 HTML 导出功能的增强。
核心更新:Typst 0.13.0 适配
本次版本升级的核心是对 Typst 0.13.0 的全面适配。Typst 作为新一代的文档排版系统,在 0.13.0 版本中引入了多项重要改进。TinyMist 通过两个主要 PR 完成了这一适配工作:
- 更新了 Typst 核心到 v0.13.0 版本
- 同步更新了 typstyle 到 v0.13.0 版本
这些更新确保了 TinyMist 能够完全支持 Typst 0.13.0 引入的新语法特性和功能改进,为用户提供无缝的升级体验。
HTML 导出功能增强
v0.13.0 版本在 HTML 导出功能方面做出了重要改进:
-
新增了
tinymist.exportTarget配置选项,允许用户指定导出目标:paged(默认):用于 PDF、PNG 和 SVG 导出html:专门针对 HTML 导出场景优化
-
增强了文本导出功能(.txt 格式),这一改进主要服务于:
- 字数统计功能
tinymist.exportText功能
这些改进使得 TinyMist 在网页内容生成和文本处理方面更加灵活和强大,特别适合需要将 Typst 文档发布到网页或进行文本分析的用户。
编辑器集成新特性
在编辑器支持方面,v0.13.0 引入了一个令人兴奋的新功能 - tinymist-vscode-html 扩展的初始化。这个扩展将为 VSCode 用户提供更强大的 HTML 相关功能支持,进一步丰富 TinyMist 的编辑器生态。
项目生态建设
本次版本还完成了多个核心库的发布工作,包括:
- tinymist-derive
- tinymist-analysis
- tinymist-std
- tinymist-vfs
- tinymist-world
- tinymist-project
- typlite
- crityp
这些库已经正式发布到 crates.io,标志着 TinyMist 项目生态的进一步成熟和完善。开发者现在可以更方便地在自己的项目中集成和使用这些组件。
用户体验优化
为了提升用户体验,v0.13.0 还做了以下改进:
- 提供了夜间版预构建二进制文件的下载脚本说明,方便开发者获取最新功能
- 优化了文档和说明,使新用户更容易上手
总结
TinyMist v0.13.0 是一个重要的里程碑版本,它不仅跟进了 Typst 核心的最新发展,还在 HTML 导出和编辑器集成方面做出了显著改进。这些更新使得 TinyMist 在文档处理、网页内容生成和开发者体验方面都达到了新的高度。对于 Typst 生态的用户和开发者来说,升级到 v0.13.0 将带来更强大、更稳定的使用体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00