Harvester项目中的第三方存储集成技术解析
前言
在云原生和虚拟化技术快速发展的今天,存储系统的灵活性和可扩展性变得尤为重要。作为一款基于Kubernetes构建的开源超融合基础设施(HCI)解决方案,Harvester项目近期实现了对第三方存储系统的集成能力,这标志着其存储架构的重要演进。
存储集成架构设计
Harvester通过Containerized Data Importer(CDI)技术实现了对多种存储后端的支持。CDI作为Kubernetes生态系统中的数据导入工具,为Harvester提供了标准化的存储卷管理接口。系统设计中特别考虑了以下关键点:
-
存储后端抽象层:通过spec.backend字段区分不同存储类型,如Longhorn V1使用backingimage,其他类型则使用cdi。
-
存储类动态选择:用户可以在创建镜像时选择任意可用的StorageClass,系统会自动适配不同的存储后端。
-
数据迁移机制:特别针对Longhorn v2数据引擎,默认启用migratable特性以支持v1.8版本后的实时迁移功能。
用户界面交互优化
Harvester团队对用户界面进行了全面升级以支持新的存储架构:
-
镜像管理界面:
- 新增存储类显示列,方便用户识别镜像的存储位置
- 上传/下载镜像时自动填充后端存储类型信息
-
虚拟机创建流程:
- 显示根磁盘的存储类和虚拟大小信息
- 当根磁盘大小小于镜像虚拟大小时显示错误提示并禁用创建按钮
- 优化了从Longhorn v2镜像创建VM时的状态显示逻辑
-
存储卷管理:
- 过滤掉标记为黄金镜像的PVC和卷
- 根据存储类型动态调整可用操作(如导出镜像、创建快照等)
技术实现细节
在底层实现上,Harvester采用了多项关键技术:
-
克隆策略管理:控制器会自动为已验证的存储提供程序(如Longhorn v2引擎)补丁cloneStrategy字段,目前仅支持copy方式。
-
存储特性适配:
- 对于CDI卷(如LVM、NFS、LHv2),禁止导出到LHv1镜像
- 除LHv2存储类外,其他卷支持快照操作
-
状态机优化:解决了从Longhorn v2镜像创建VM时因CDI完整拷贝导致的长时间"stopping"状态问题,通过状态机调整实现了更流畅的用户体验。
未来发展方向
虽然当前版本已实现核心功能,但团队规划了进一步的优化:
-
存储策略配置:计划为高级用户提供cloneStrategy等参数的界面配置能力
-
第三方存储配置:将建立专门的配置界面和管理流程
-
性能优化:持续改进从外部存储创建VM的等待时间和状态显示
结语
Harvester对第三方存储的集成不仅扩展了其应用场景,也为用户提供了更灵活的存储选择。这种架构设计体现了云原生技术的优势,通过抽象层将不同存储系统无缝集成,同时保持用户体验的一致性。随着功能的不断完善,Harvester有望成为更加强大和通用的云原生虚拟化平台。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00