MiniMax-M1 项目亮点解析
2025-06-17 04:48:33作者:钟日瑜
项目的基础介绍
MiniMax-M1 是由 MiniMax-AI 公司开发的一款大型的混合注意力推理模型,它是世界上第一个开放权重的混合注意力推理模型。该模型基于混合专家(MoE)架构和闪电注意力机制,由 4560 亿个参数组成,每个 token 激活 45.9 亿个参数。MiniMax-M1 模型支持 100 万个 token 的上下文长度,是 DeepSeek R1 的 8 倍。闪电注意力机制在 MiniMax-M1 中使得测试时间的计算效率得到提高,例如,与 DeepSeek R1 相比,在 10 万个 token 的生成长度下,M1 只消耗了 25% 的 FLOPs。这使得 MiniMax-M1 非常适合处理需要处理长输入和广泛思考的复杂任务。
项目代码目录及介绍
MiniMax-M1 的代码库包含以下目录和文件:
docs: 包含项目的文档文件。figures: 包含项目的图表和图像。LICENSE: 包含项目的许可证文件。MiniMax_M1_tech_report.pdf: 包含项目的技术报告。README.md: 包含项目的自述文件。config.json: 包含模型的配置文件。configuration_minimax_m1.py: 包含模型的配置代码。main.py: 包含模型的主代码文件。merges.txt: 包含项目的合并记录文件。model.safetensors.index.json: 包含模型的索引文件。modeling_minimax_m1.py: 包含模型的建模代码。tokenizer.json: 包含分词器的配置文件。tokenizer_config.json: 包含分词器的配置代码。vocab.json: 包含词汇表文件。
项目亮点功能拆解
MiniMax-M1 的亮点功能包括:
- 混合 MoE 架构: 模型使用混合 MoE 架构,结合了多个专家模型的优点,能够在推理过程中自动选择最合适的专家模型,从而提高推理的准确性和效率。
- 闪电注意力机制: 模型使用闪电注意力机制,能够在长序列上快速有效地进行注意力计算,从而提高推理的速度。
- 大规模 RL 训练: 模型使用大规模强化学习进行训练,能够处理各种复杂的推理任务,例如数学推理、软件开发等。
- 高效 RL 缩放框架: 模型使用高效的 RL 缩放框架,能够在保持模型性能的同时降低计算复杂度,从而提高推理的速度和效率。
项目主要技术亮点拆解
MiniMax-M1 的主要技术亮点包括:
- CISPO 算法: CISPO 是一种新颖的算法,它通过裁剪重要性采样权重而不是 token 更新来提高 RL 训练的效率。
- 混合注意力设计: 模型的混合注意力设计能够自然地提高 RL 的效率,并解决在混合架构中缩放 RL 时的独特挑战。
- 40K 和 80K 思考预算: 模型训练了两个版本,分别具有 40K 和 80K 的思考预算,能够满足不同推理任务的需求。
与同类项目对比的亮点
与同类项目相比,MiniMax-M1 具有以下亮点:
- 更长的上下文长度: MiniMax-M1 支持的上下文长度为 100 万个 token,比 DeepSeek R1 的 12.8 万个 token 要长得多,能够处理更复杂的推理任务。
- 更低的计算复杂度: MiniMax-M1 在 10 万个 token 的生成长度下,只消耗了 DeepSeek R1 25% 的 FLOPs,能够更快地进行推理。
- 更好的推理性能: MiniMax-M1 在标准基准测试中表现优异,尤其是在复杂的软件开发和工具使用任务上,比 DeepSeek R1 和 Qwen3-235B 等其他开放权重模型表现更好。
总而言之,MiniMax-M1 是一款功能强大、性能优越的大规模混合注意力推理模型,它能够处理各种复杂的推理任务,并为下一代语言模型代理提供强大的推理基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
212
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319