基于ECS Fargate构建有状态MCP服务器的完整指南
2025-07-05 09:59:22作者:戚魁泉Nursing
项目概述
本文将详细介绍如何在AWS ECS Fargate上部署一个有状态的MCP(Model Context Protocol)服务器。MCP是一种新兴的协议规范,专门为AI模型交互设计,最新版本(v2025-03-26)引入了Streamable HTTP传输方式,使得无需额外桥接组件即可在ECS Fargate和ALB上原生运行MCP服务器成为可能。
架构设计
该解决方案的核心架构包含以下关键组件:
- ECS Fargate:运行MCP服务器容器
- ALB(应用负载均衡器):分发客户端请求
- ECR(容器注册表):存储自定义MCP服务器镜像
- VPC网络:提供安全的网络环境
架构优势在于完全基于Serverless组件,无需管理底层基础设施,同时保持了MCP协议的有状态特性。
前置准备
在开始部署前,请确保已准备好以下工具和环境:
- AWS CLI配置了有效凭证
- Terraform安装并配置
- Node.js运行环境(用于本地测试)
详细部署步骤
1. 获取项目代码
首先需要获取包含MCP服务器实现的代码库,其中包含服务器端和客户端的实现。
2. 安装依赖项
项目包含两个主要部分,都需要安装各自的Node.js依赖:
(cd src/mcpclient && npm install)
(cd src/mcpserver && npm install)
3. 本地测试验证
在部署到AWS前,建议先在本地测试MCP服务器的功能:
启动服务器:
node src/mcpserver/index.js
在另一个终端窗口运行客户端测试:
node src/mcpclient/index.js
4. 构建并推送容器镜像
项目提供了自动化脚本将MCP服务器打包为Docker镜像并推送到ECR:
- 编辑
publish-to-ecr.sh脚本,设置您的ECR仓库信息 - 执行脚本完成构建和推送:
./publish-to-ecr.sh
5. Terraform基础设施部署
使用Terraform可以一键部署完整的AWS基础设施:
- 修改
terraform/locals.tf中的配置,特别是ECR仓库信息 - 可选:根据需求调整区域、VPC配置等参数
- 执行部署命令:
cd terraform
terraform init
terraform plan
terraform apply
部署完成后,获取MCP服务器端点地址:
export MCP_SERVER_ENDPOINT=$(terraform output --raw mcp_endpoint)
关键配置解析
有状态会话处理
本项目演示的是MCP服务器的有状态模式,这意味着:
- 客户端与服务器建立持久SSE(Server-Sent Events)连接
- 支持会话恢复和服务器主动通知
- 单实例运行时表现良好
多实例场景下需要注意:
- 默认情况下会话信息不会在实例间同步
- 解决方案是启用ALB的基于cookie的粘性会话
- 本示例已修改MCP客户端以支持cookie处理
HTTPS安全配置
生产环境必须启用HTTPS:
- 默认部署使用HTTP仅适合测试
- 可通过修改
terraform/alb.tf配置ALB监听器 - 需要准备有效的SSL证书和域名
成本优化建议
部署的资源会产生费用,特别是:
- 持续运行的ECS任务
- ALB使用费
- 数据传输费用
测试完成后务必销毁资源:
terraform destroy
最佳实践
- 环境隔离:为开发、测试和生产使用不同的AWS账户或VPC
- 监控设置:为ECS服务配置CloudWatch警报
- 自动伸缩:根据负载配置适当的伸缩策略
- 安全加固:限制ALB的安全组入站规则
常见问题排查
- 部署后无法连接:检查ALB目标组健康状态,ECS任务可能需要2-3分钟初始化
- 会话不持久:验证粘性会话配置是否正确
- 性能问题:调整ECS任务的内存和CPU配置
通过本指南,您应该能够成功在AWS上部署一个有状态的MCP服务器,为AI模型交互提供可靠的后端服务。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322