使用segmentation_models.pytorch进行图像分割预测
2025-05-22 11:11:19作者:晏闻田Solitary
segmentation_models.pytorch是一个基于PyTorch的语义分割模型库,它提供了多种预训练模型架构,能够帮助开发者快速实现图像分割任务。本文将详细介绍如何使用该库加载预训练权重并对指定图像进行预测,最终输出预测的分割掩码。
准备工作
在开始预测之前,需要确保已经安装了必要的库:
- PyTorch
- segmentation_models.pytorch
- OpenCV或PIL等图像处理库
模型加载与初始化
首先需要导入必要的模块并初始化模型。segmentation_models.pytorch支持多种模型架构,如Unet、FPN、PSPNet等,同时也支持多种编码器,如ResNet、EfficientNet等。
import segmentation_models_pytorch as smp
# 初始化模型
model = smp.Unet(
encoder_name="resnet34", # 选择编码器
encoder_weights="imagenet", # 使用预训练权重
in_channels=3, # 输入通道数
classes=1, # 输出类别数
activation="sigmoid" # 激活函数
)
加载预训练权重
如果已经训练好了模型并保存了权重文件,可以使用PyTorch的标准方式加载:
import torch
# 加载保存的模型权重
checkpoint = torch.load("path_to_your_model_weights.pth")
model.load_state_dict(checkpoint["state_dict"])
model.eval() # 设置为评估模式
图像预处理
在预测前,需要对输入图像进行适当的预处理,使其符合模型的输入要求:
import cv2
import numpy as np
from torchvision import transforms
# 定义预处理转换
preprocess = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((256, 256)), # 调整到模型输入尺寸
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载并预处理图像
image = cv2.imread("your_image.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 转换为RGB
input_tensor = preprocess(image)
input_batch = input_tensor.unsqueeze(0) # 添加batch维度
进行预测
将预处理后的图像输入模型进行预测:
with torch.no_grad():
output = model(input_batch)
# 获取预测结果
pred_mask = (output.squeeze().cpu().numpy() > 0.5).astype(np.uint8) # 二值化处理
结果可视化
最后,可以将原始图像与预测掩码进行可视化对比:
import matplotlib.pyplot as plt
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.imshow(image)
plt.title("Original Image")
plt.axis("off")
plt.subplot(1, 2, 2)
plt.imshow(pred_mask, cmap="gray")
plt.title("Predicted Mask")
plt.axis("off")
plt.show()
高级技巧
-
多类别分割:对于多类别分割任务,只需修改模型初始化时的classes参数,并使用softmax激活函数。
-
不同输入尺寸:模型可以处理不同尺寸的输入图像,但需要注意保持长宽比或进行适当的填充。
-
后处理:预测结果可以进行后处理,如形态学操作(开闭运算)来优化分割边界。
-
GPU加速:如果有GPU可用,可以将模型和数据移动到GPU上加速预测。
通过segmentation_models.pytorch库,开发者可以快速实现高质量的图像分割解决方案,无论是医学图像分析、遥感图像解译还是工业质检等场景,都能获得良好的效果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
337
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
暂无简介
Dart
768
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246