深入分析oneTBB项目中concurrent_vector的阻塞问题
2025-06-04 02:57:28作者:虞亚竹Luna
问题背景
在Intel的oneTBB(Threading Building Blocks)并行编程库中,tbb::concurrent_vector是一个线程安全的动态数组容器,它允许多个线程并发地进行插入操作而无需外部同步。然而,在2021.13版本中,用户报告了一个严重的阻塞问题,即使在最简单的使用场景下也会出现。
问题现象
当多个线程同时调用concurrent_vector的grow_by()方法进行并发插入时,系统会出现阻塞。具体表现为多个线程在grow_by()函数内部无限循环等待,无法继续执行。这个问题在Windows 10 Enterprise LTSC系统上使用Visual Studio 2017(17.9.7版本)编译运行时被观察到,硬件环境为Intel Xeon Gold 6248R CPU。
问题复现
通过以下简单的测试代码可以稳定复现该问题:
#include "random"
#include "oneapi/tbb/parallel_for.h"
#include "oneapi/tbb/concurrent_vector.h"
std::mt19937_64 gen;
int main()
{
constexpr int max_grow_by = 32;
constexpr int n_inserts = 1024;
constexpr int n_repits = 1024*128;
auto rand = std::bind(std::uniform_int_distribution<int>{1, max_grow_by}, std::ref(gen));
std::vector<int> n_grow_by(n_inserts);
for (int iter = 0; iter < n_repits; ++iter) {
std::generate(n_grow_by.begin(), n_grow_by.end(), rand);
tbb::concurrent_vector<double> vec;
tbb::parallel_for<int>(0, n_inserts, [&](int i) {
vec.grow_by(n_grow_by[i]);
});
}
return 0;
}
技术分析
concurrent_vector内部使用分段表结构来支持并发增长,每个段包含固定数量的元素。当容器需要扩容时,多个线程可能会同时尝试分配新的段。阻塞问题的根源在于内部同步机制的设计缺陷:
- 分段表锁竞争:多个线程同时尝试修改分段表时,可能会陷入互相等待的状态
- 内存分配竞争:在分配新段内存时,如果多个线程同时触发分配,可能导致锁竞争
- 扩容策略问题:grow_by()方法的实现可能在处理并发扩容请求时存在逻辑缺陷
解决方案
开发团队已经提出了修复方案,主要改进点包括:
- 优化内部锁机制,减少锁竞争的可能性
- 改进内存分配策略,避免在热点路径上进行同步
- 重新设计扩容算法,确保在高并发场景下的正确性
影响范围
该问题影响所有使用concurrent_vector进行高并发插入操作的应用程序,特别是在以下场景中风险较高:
- 大量线程同时调用grow_by()方法
- 插入操作频繁且不可预测
- 系统负载较高时
最佳实践
在使用concurrent_vector时,建议:
- 避免在热点路径上频繁调用grow_by()
- 如果可能,预先预留足够的容量
- 考虑批量插入而非单元素插入
- 及时更新到修复后的版本
结论
并发容器的实现是并行编程中最具挑战性的任务之一。oneTBB团队对concurrent_vector阻塞问题的快速响应和修复展现了其对产品质量的承诺。开发者在使用此类高级并发数据结构时,应当充分了解其特性和限制,并在生产环境中进行充分的压力测试。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178