深入分析oneTBB项目中concurrent_vector的阻塞问题
2025-06-04 00:03:47作者:虞亚竹Luna
问题背景
在Intel的oneTBB(Threading Building Blocks)并行编程库中,tbb::concurrent_vector是一个线程安全的动态数组容器,它允许多个线程并发地进行插入操作而无需外部同步。然而,在2021.13版本中,用户报告了一个严重的阻塞问题,即使在最简单的使用场景下也会出现。
问题现象
当多个线程同时调用concurrent_vector的grow_by()方法进行并发插入时,系统会出现阻塞。具体表现为多个线程在grow_by()函数内部无限循环等待,无法继续执行。这个问题在Windows 10 Enterprise LTSC系统上使用Visual Studio 2017(17.9.7版本)编译运行时被观察到,硬件环境为Intel Xeon Gold 6248R CPU。
问题复现
通过以下简单的测试代码可以稳定复现该问题:
#include "random"
#include "oneapi/tbb/parallel_for.h"
#include "oneapi/tbb/concurrent_vector.h"
std::mt19937_64 gen;
int main()
{
constexpr int max_grow_by = 32;
constexpr int n_inserts = 1024;
constexpr int n_repits = 1024*128;
auto rand = std::bind(std::uniform_int_distribution<int>{1, max_grow_by}, std::ref(gen));
std::vector<int> n_grow_by(n_inserts);
for (int iter = 0; iter < n_repits; ++iter) {
std::generate(n_grow_by.begin(), n_grow_by.end(), rand);
tbb::concurrent_vector<double> vec;
tbb::parallel_for<int>(0, n_inserts, [&](int i) {
vec.grow_by(n_grow_by[i]);
});
}
return 0;
}
技术分析
concurrent_vector内部使用分段表结构来支持并发增长,每个段包含固定数量的元素。当容器需要扩容时,多个线程可能会同时尝试分配新的段。阻塞问题的根源在于内部同步机制的设计缺陷:
- 分段表锁竞争:多个线程同时尝试修改分段表时,可能会陷入互相等待的状态
- 内存分配竞争:在分配新段内存时,如果多个线程同时触发分配,可能导致锁竞争
- 扩容策略问题:grow_by()方法的实现可能在处理并发扩容请求时存在逻辑缺陷
解决方案
开发团队已经提出了修复方案,主要改进点包括:
- 优化内部锁机制,减少锁竞争的可能性
- 改进内存分配策略,避免在热点路径上进行同步
- 重新设计扩容算法,确保在高并发场景下的正确性
影响范围
该问题影响所有使用concurrent_vector进行高并发插入操作的应用程序,特别是在以下场景中风险较高:
- 大量线程同时调用grow_by()方法
- 插入操作频繁且不可预测
- 系统负载较高时
最佳实践
在使用concurrent_vector时,建议:
- 避免在热点路径上频繁调用grow_by()
- 如果可能,预先预留足够的容量
- 考虑批量插入而非单元素插入
- 及时更新到修复后的版本
结论
并发容器的实现是并行编程中最具挑战性的任务之一。oneTBB团队对concurrent_vector阻塞问题的快速响应和修复展现了其对产品质量的承诺。开发者在使用此类高级并发数据结构时,应当充分了解其特性和限制,并在生产环境中进行充分的压力测试。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
288
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
245
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
449
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885