深入分析oneTBB项目中concurrent_vector的阻塞问题
2025-06-04 10:05:07作者:虞亚竹Luna
问题背景
在Intel的oneTBB(Threading Building Blocks)并行编程库中,tbb::concurrent_vector是一个线程安全的动态数组容器,它允许多个线程并发地进行插入操作而无需外部同步。然而,在2021.13版本中,用户报告了一个严重的阻塞问题,即使在最简单的使用场景下也会出现。
问题现象
当多个线程同时调用concurrent_vector的grow_by()方法进行并发插入时,系统会出现阻塞。具体表现为多个线程在grow_by()函数内部无限循环等待,无法继续执行。这个问题在Windows 10 Enterprise LTSC系统上使用Visual Studio 2017(17.9.7版本)编译运行时被观察到,硬件环境为Intel Xeon Gold 6248R CPU。
问题复现
通过以下简单的测试代码可以稳定复现该问题:
#include "random"
#include "oneapi/tbb/parallel_for.h"
#include "oneapi/tbb/concurrent_vector.h"
std::mt19937_64 gen;
int main()
{
constexpr int max_grow_by = 32;
constexpr int n_inserts = 1024;
constexpr int n_repits = 1024*128;
auto rand = std::bind(std::uniform_int_distribution<int>{1, max_grow_by}, std::ref(gen));
std::vector<int> n_grow_by(n_inserts);
for (int iter = 0; iter < n_repits; ++iter) {
std::generate(n_grow_by.begin(), n_grow_by.end(), rand);
tbb::concurrent_vector<double> vec;
tbb::parallel_for<int>(0, n_inserts, [&](int i) {
vec.grow_by(n_grow_by[i]);
});
}
return 0;
}
技术分析
concurrent_vector内部使用分段表结构来支持并发增长,每个段包含固定数量的元素。当容器需要扩容时,多个线程可能会同时尝试分配新的段。阻塞问题的根源在于内部同步机制的设计缺陷:
- 分段表锁竞争:多个线程同时尝试修改分段表时,可能会陷入互相等待的状态
- 内存分配竞争:在分配新段内存时,如果多个线程同时触发分配,可能导致锁竞争
- 扩容策略问题:grow_by()方法的实现可能在处理并发扩容请求时存在逻辑缺陷
解决方案
开发团队已经提出了修复方案,主要改进点包括:
- 优化内部锁机制,减少锁竞争的可能性
- 改进内存分配策略,避免在热点路径上进行同步
- 重新设计扩容算法,确保在高并发场景下的正确性
影响范围
该问题影响所有使用concurrent_vector进行高并发插入操作的应用程序,特别是在以下场景中风险较高:
- 大量线程同时调用grow_by()方法
- 插入操作频繁且不可预测
- 系统负载较高时
最佳实践
在使用concurrent_vector时,建议:
- 避免在热点路径上频繁调用grow_by()
- 如果可能,预先预留足够的容量
- 考虑批量插入而非单元素插入
- 及时更新到修复后的版本
结论
并发容器的实现是并行编程中最具挑战性的任务之一。oneTBB团队对concurrent_vector阻塞问题的快速响应和修复展现了其对产品质量的承诺。开发者在使用此类高级并发数据结构时,应当充分了解其特性和限制,并在生产环境中进行充分的压力测试。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26