Torrent-RW 项目使用教程
2024-08-18 06:35:46作者:宣利权Counsellor
1. 项目的目录结构及介绍
Torrent-RW 项目的目录结构相对简单,主要包含以下几个部分:
torrent-rw/
├── LICENSE
├── README.md
├── Torrent.php
└── examples/
├── create.php
├── parse.php
└── readme.md
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- Torrent.php: 核心文件,包含读写
.torrent文件的 PHP 类。 - examples/: 示例文件夹,包含如何使用该类的示例代码。
- create.php: 创建
.torrent文件的示例。 - parse.php: 解析
.torrent文件的示例。 - readme.md: 示例文件夹的说明文档。
- create.php: 创建
2. 项目的启动文件介绍
项目的启动文件主要是 examples 文件夹中的示例代码。这些示例代码展示了如何使用 Torrent.php 类来创建和解析 .torrent 文件。
- create.php: 该文件演示了如何使用
Torrent.php类来创建一个新的.torrent文件。 - parse.php: 该文件演示了如何使用
Torrent.php类来解析现有的.torrent文件并提取其元数据。
3. 项目的配置文件介绍
Torrent-RW 项目本身没有专门的配置文件。所有的配置和参数设置都是通过在 PHP 代码中直接调用 Torrent.php 类的方法来完成的。例如,在 create.php 和 parse.php 示例中,你可以看到如何设置和使用这些方法。
// 示例:创建一个新的 .torrent 文件
require_once 'Torrent.php';
$torrent = new Torrent( '/path/to/file/or/directory' );
$torrent->save( '/path/to/new/torrent/file.torrent' );
通过这些示例代码,你可以了解如何使用 Torrent.php 类来读写 .torrent 文件。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
199
219
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100