MMPose中RTMO算法训练关键问题解析与优化实践
2025-06-03 12:55:34作者:傅爽业Veleda
引言
MMPose作为开源姿态估计框架,其RTMO算法因其高效性受到广泛关注。但在实际训练过程中,开发者常会遇到目标分配、损失计算等关键环节的疑问。本文将深入分析RTMO训练过程中的典型问题,并提供优化实践经验。
数据预处理环节的关键差异
在RTMO训练中,数据预处理环节存在两个关键组件:BottomupRandomAffine和BottomupResize。这两个组件在功能上有着本质区别:
- BottomupRandomAffine:用于训练阶段,实现随机仿射变换(包括旋转、缩放、平移等),增强模型泛化能力
- BottomupResize:用于验证/测试阶段,仅进行简单的尺寸调整
常见错误是将验证流程(val_pipeline)误用于训练阶段,导致模型无法获得足够的数据增强。正确做法是训练阶段应使用包含Mosaic、MixUp等增强策略的train_pipeline_stage1/2。
正负样本分配机制解析
RTMO采用SimOTA算法进行正负样本分配,其关键点在于:
- 分配过程使用的是原始标注坐标而非resize后坐标
- 通过OKS(Object Keypoint Similarity)作为匹配指标
- 动态确定每个gt框匹配的anchor数量
这种设计源于目标检测任务的特性——正负样本分配应在原始空间进行,确保匹配准确性,而后续的坐标变换会在损失计算前完成。
MLECCLoss负值现象分析
训练中出现的MLECCLoss负值现象是正常情况,其数学原理为:
loss = -torch.log(prob + 1e-4)
当预测概率prob>1时:
- 由于多个关节点的概率连乘(prob *= (o * t).sum(dim=-1)),可能使prob远大于1
- 对大于1的数取对数再取负,自然得到负值
实际配置中,该loss的权重通常设置为1e-3到1e-2量级,过大的权重可能导致训练不稳定。
训练复现的关键参数
要复现论文报告的精度,需特别注意:
- Batch Size一致性:配置中的"8xb32"表示8GPU×32batch,总batch size为256
- 学习率调整:当改变batch size时,应按比例调整学习率
- 两阶段训练:注意RTMOModeSwitchHook在350epoch时的参数切换
常见训练不收敛问题往往源于batch size与学习率的不匹配。例如将总batch size从256降至16时,理论上学习率应调整为原值的1/16。
实际训练建议
- 数据管道检查:确保训练使用正确的pipeline(含数据增强)
- 损失监控:理解各loss项的合理范围,如MLECCLoss可能出现负值
- 超参数调整:batch size变化时同步调整学习率
- 配置验证:检查模型配置中的数据集声明是否正确(如COCO数据集不应标注为CrowdPose)
通过系统性地理解这些关键点,开发者能够更高效地使用MMPose框架训练出高性能的RTMO模型。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
654
仓颉编程语言运行时与标准库。
Cangjie
141
878