Apache Arrow-RS IPC读写性能优化与基准测试
2025-06-27 04:44:06作者:傅爽业Veleda
Apache Arrow-RS项目正在考虑通过允许用户选择性地跳过验证步骤来提升IPC(进程间通信)读写器的性能。为了确保这种优化确实能带来性能提升,项目组计划为IPC读写器添加基准测试功能。
背景与挑战
在数据处理系统中,序列化和反序列化是常见的性能瓶颈。Arrow的IPC格式作为一种高效的列式内存数据交换格式,其读写性能直接影响着整个数据处理管道的效率。目前,Arrow-RS中的IPC读写器在读取数据时会执行严格的验证,虽然这保证了数据安全,但可能带来不必要的性能开销。
解决方案设计
项目组计划为Arrow-RS添加两个新的基准测试模块:
- IPC读取器基准测试:测量从序列化数据中读取记录批次的性能
- IPC写入器基准测试:测量将记录批次序列化为IPC格式的性能
基准测试将采用以下设计思路:
- 使用包含基本数据类型(Int32、UInt64和Float64数组)的记录批次作为测试数据
- 覆盖四种主要的IPC接口:
- 流式写入器(StreamWriter):测试数据序列化为流的速度
- 文件写入器(FileWriter)
- 流式读取器(StreamReader):测试从序列化数据中读取的速度
- 文件读取器(FileReader)
技术实现细节
基准测试将遵循Arrow-RS项目中已有的Parquet读写器基准测试模式。测试用例将使用Rust的标准基准测试框架,通过cargo bench命令执行。
对于读取性能测试,重点将放在:
- 验证开销的测量
- 不同数据大小的吞吐量
- 内存分配模式分析
对于写入性能测试,将关注:
- 序列化速度
- 内存使用效率
- 不同压缩选项的影响
未来扩展方向
在建立基础测试框架后,可以进一步扩展测试场景:
- 添加复杂数据类型(如嵌套结构、字典编码等)的测试
- 测试不同数据规模下的性能表现
- 比较验证开启与关闭时的性能差异
- 添加多线程环境下的性能测试
总结
通过建立全面的IPC读写基准测试套件,Arrow-RS项目将能够:
- 准确评估验证步骤的性能影响
- 为性能优化提供数据支持
- 确保未来的修改不会引入性能退化
- 帮助用户根据具体场景在安全性和性能之间做出合理选择
这一工作将为Arrow-RS的高性能数据处理能力奠定更坚实的基础,特别是在需要频繁数据交换的场景中。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.26 K
暂无简介
Dart
621
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
791
77