解析pymc3_models项目中的贝叶斯线性回归实现
2025-07-07 00:11:25作者:戚魁泉Nursing
概述
本文将深入解析pymc3_models项目中LinearRegression.py文件的实现细节,这是一个基于PyMC3框架构建的贝叶斯线性回归模型。与传统的线性回归不同,贝叶斯方法提供了完整的概率分布描述,能够给出预测的不确定性估计。
模型结构
该线性回归模型继承自BayesianModel基类,核心结构包含以下几个关键部分:
-
模型参数:
- alpha:截距项,服从正态分布N(0, 100²)
- betas:回归系数,同样服从N(0, 100²)
- s:噪声标准差,服从半正态分布
-
模型公式:
mean = alpha + T.sum(betas * model_input, 1) y = pm.Normal('y', mu=mean, sd=s, observed=model_output)这表示观测值y服从以线性组合为均值、s为标准差的正态分布
核心方法解析
create_model方法
该方法构建了PyMC3模型的核心结构,有几个技术要点值得注意:
- 使用Theano共享变量来存储输入数据,这使得模型可以支持在线学习和小批量训练
- 模型参数采用宽泛的先验分布,允许数据主导后验分布的形状
- 通过with pm.Model()上下文管理器定义模型结构,这是PyMC3的标准做法
fit方法
fit方法提供了两种推断方式:
-
ADVI(自动微分变分推断):
- 适合大规模数据集
- 支持小批量训练(minibatch)
- 速度快但近似程度较高
-
NUTS采样(No-U-Turn Sampler):
- 精确的马尔可夫链蒙特卡洛方法
- 适合中小规模数据集
- 计算成本较高
方法参数说明:
num_advi_sample_draws:ADVI拟合后从近似分布中抽取的样本数minibatch_size:小批量大小,None表示不使用小批量inference_args:可自定义的推断参数
predict方法
预测阶段的特点:
- 使用后验预测检查(ppc)生成预测
- 可选择返回预测的标准差(return_std)
num_ppc_samples控制从后验分布中抽取的样本数
score方法
使用sklearn的r2_score评估模型性能,这是回归问题常用的评估指标。
技术亮点
-
共享变量设计: 使用Theano共享变量使得模型可以动态更新训练数据,支持在线学习场景。
-
小批量训练支持: 通过pm.Minibatch实现了对小批量训练的支持,这对处理大规模数据集非常有用。
-
概率编程范式: 完全遵循PyMC3的概率编程范式,所有参数都有明确的概率分布。
-
模型持久化: 提供了save/load方法,可以保存和恢复训练好的模型。
使用建议
- 对于中小数据集(样本数<10,000),建议使用NUTS采样以获得更准确的后验分布
- 对于大数据集,ADVI+小批量是更高效的选择
- 预测时如果需要不确定性估计,设置return_std=True
- 可以通过调整先验分布来融入领域知识
总结
pymc3_models中的LinearRegression实现提供了一个完整的贝叶斯线性回归解决方案,相比传统线性回归,它能够提供:
- 完整的参数不确定性估计
- 灵活的推断方法选择
- 对大规模数据的支持
- 概率化的预测输出
这种实现方式特别适合需要量化不确定性的应用场景,如风险评估、决策支持系统等。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355