在Next.js MDX中使用ShikiJS实现高效代码高亮
2025-05-20 16:46:52作者:咎岭娴Homer
背景介绍
ShikiJS是一个基于TextMate语法的代码高亮工具,能够提供精准的语法高亮效果。在Next.js项目中结合MDX使用时,开发者常常会遇到性能问题,特别是在服务端渲染(SSR)场景下。
常见问题分析
在Next.js的MDX集成中直接使用@shikijs/rehype插件时,可能会遇到以下典型问题:
- 初始化性能瓶颈:每次请求都需要重新初始化Shiki高亮器,导致响应时间延长
- 主题加载开销:同时加载light/dark双主题会增加资源负担
- 开发环境体验差:本地开发时热重载会反复触发高亮器初始化
优化方案
方案一:预初始化高亮器
通过Next.js的Instrumentation API提前初始化Shiki高亮器:
// instrumentation.ts
import { getSingletonHighlighterCore } from 'shiki/core'
export async function register() {
await getSingletonHighlighterCore({
themes: ['github-light', 'github-dark'],
langs: ['javascript', 'typescript']
})
}
这种方法将高亮器初始化提前到应用启动阶段,避免在请求时初始化。
方案二:静态生成优化
对于内容相对固定的场景,可以使用Next.js的静态生成功能:
export function generateStaticParams() {
return posts.map(post => ({ slug: post.slug }))
}
配合增量静态再生(ISR)策略,可以在构建时生成静态页面,同时保持内容的可更新性。
方案三:缓存策略
实现自定义缓存层来存储已处理的高亮结果:
import { createStorage } from 'unstorage'
const storage = createStorage()
async function getHighlightedCode(code: string, lang: string) {
const cacheKey = `${lang}:${code}`
const cached = await storage.getItem(cacheKey)
if (cached) return cached
const highlighted = await highlighter.codeToHtml(code, { lang })
await storage.setItem(cacheKey, highlighted)
return highlighted
}
最佳实践建议
- 按需加载语言:只配置项目实际需要的编程语言
- 简化主题配置:优先使用单一主题,必要时再考虑主题切换
- 分层缓存:结合内存缓存和持久化缓存策略
- 监控性能:添加性能指标监控高亮处理的耗时
总结
在Next.js MDX项目中优化ShikiJS的高亮性能需要综合考虑初始化策略、缓存机制和渲染模式。通过预初始化、静态生成和智能缓存等技术的组合应用,可以显著提升代码高亮的渲染效率,改善用户体验。开发者应根据项目实际需求选择合适的优化方案,在功能完整性和性能表现之间取得平衡。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
475
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
225
94
暂无简介
Dart
725
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19