Evennia项目中的Scipy依赖问题分析与解决方案
问题背景
Evennia作为一款基于Python的MUD游戏服务器框架,在其扩展功能中依赖了Scipy科学计算库。近期有开发者报告,在Python 3.12.2和3.11.8环境下安装evennia[extra]扩展包时,Scipy 1.9.3版本出现了兼容性问题,导致安装失败。
问题分析
Scipy作为Python生态中重要的科学计算库,其1.9.3版本在较新的Python环境中确实存在一些兼容性问题。核心问题出在Scipy内部对Numpy数组的导入方式上,特别是from scipy import zeros这样的语句在新环境中不再被支持。
解决方案
经过技术团队的调查和测试,确定了以下解决方案:
-
代码修改:将原有的
from scipy import zeros语句改为from numpy import zeros。这一修改直接解决了导入问题,因为zeros函数本来就是Numpy的核心功能之一。 -
版本升级:建议将Scipy依赖升级到1.12版本,该版本已经修复了在新Python环境中的兼容性问题。
-
依赖管理:考虑到Scipy依赖于Numpy,技术团队建议在Evennia的依赖声明中显式包含Numpy,以确保依赖关系的完整性。
影响范围
这一改动主要影响Evennia的扩展功能(extra)部分,特别是那些使用Scipy进行数学运算或数据分析的组件。经过测试,大多数贡献包(contrib)都能正常工作,但XYZ贡献包需要额外修改。
未来展望
Evennia技术团队已经将这一修复合并到主分支(main)中,并同时增加了对Python 3.12的全面支持。这为即将发布的Evennia 4.0版本奠定了良好的基础,特别是对Windows平台用户而言,因为Twisted框架的iocpsupport现在也支持Python 3.12了。
开发者建议
对于正在使用Evennia的开发者,建议:
- 如果遇到类似问题,可以尝试手动修改导入语句
- 考虑升级到最新的Scipy版本
- 关注Evennia 4.0的发布,以获得更全面的Python 3.12支持
这一系列改进不仅解决了当前的兼容性问题,还为Evennia未来的发展提供了更广阔的平台支持空间。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00