Deeply-Recursive Convolutional Network for Image Super-Resolution 项目教程
2024-09-23 22:23:21作者:齐冠琰
1. 项目的目录结构及介绍
deeply-recursive-cnn-tf/
├── data/
│ └── (数据集文件)
├── documents/
│ └── (文档文件)
├── model/
│ └── (模型文件)
├── .gitignore
├── LICENSE
├── README.md
├── augmentation.py
├── main.py
├── super_resolution.py
├── super_resolution_utilty.py
└── test.py
目录结构介绍
- data/: 存放训练和评估所需的数据集文件。
- documents/: 存放项目相关的文档文件。
- model/: 存放训练好的模型文件。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- augmentation.py: 数据增强脚本。
- main.py: 项目的主启动文件,用于训练和评估模型。
- super_resolution.py: 超分辨率模型的实现文件。
- super_resolution_utilty.py: 超分辨率模型的辅助工具文件。
- test.py: 用于测试模型的脚本。
2. 项目的启动文件介绍
main.py
main.py 是项目的主启动文件,负责模型的训练和评估。以下是一些常用的命令示例:
-
训练模型:
python main.py -
使用简单模型进行训练:
python main.py --end_lr 1e-4 --feature_num 32 --inference_depth 5 -
仅评估 Set14 数据集:
python main.py --dataset set14 --is_training False --feature_num 32 --inference_depth 5 -
训练 x4 倍率图像:
python main.py --scale 4 -
使用增强数据进行训练:
python main.py --training_set ScSR2
3. 项目的配置文件介绍
README.md
README.md 文件包含了项目的详细介绍、使用说明和配置信息。以下是一些关键配置项的介绍:
-
训练参数:
--end_lr: 学习率的结束值。--feature_num: 特征数量。--inference_depth: 推理深度。--scale: 图像的放大倍数。--training_set: 训练数据集的目录名称。
-
评估参数:
--dataset: 评估数据集的名称(如set5,set14,bsd100,urban100,all)。--is_training: 是否为训练模式(False表示评估模式)。
通过这些配置项,用户可以根据自己的需求调整模型的训练和评估过程。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881