Forestploter项目入门指南:绘制专业森林图的技术详解
2025-06-08 02:07:46作者:凤尚柏Louis
概述
森林图(Forest Plot)是医学研究和元分析中常用的数据可视化工具,用于展示效应量及其置信区间。forestploter是一个专门用于绘制森林图的R包,相比其他类似工具(如forestplot、meta等),它具有以下独特优势:
- 将森林图视为表格处理,用户可以完全控制内容和显示方式
- 通过主题系统统一控制图形参数
- 支持绘制后编辑修改
- 支持多列置信区间和分组显示
基础森林图绘制
数据准备
绘制森林图的第一步是准备数据框,其中需要包含以下关键元素:
library(forestploter)
# 示例数据准备
dt <- read.csv(system.file("extdata", "example_data.csv", package = "forestploter"))
dt <- dt[, 1:6]
# 处理子组缩进
dt$Subgroup <- ifelse(is.na(dt$Placebo),
dt$Subgroup,
paste0(" ", dt$Subgroup))
# 处理缺失值
dt$Treatment <- ifelse(is.na(dt$Treatment), "", dt$Treatment)
dt$Placebo <- ifelse(is.na(dt$Placebo), "", dt$Placebo)
# 计算标准误
dt$se <- (log(dt$hi) - log(dt$est)) / 1.96
# 添加空白列用于绘制置信区间
dt$` ` <- paste(rep(" ", 20), collapse = " ")
# 创建置信区间显示列
dt$`HR (95% CI)` <- ifelse(is.na(dt$se), "",
sprintf("%.2f (%.2f to %.2f)",
dt$est, dt$low, dt$hi))
基本绘图函数
使用forest()
函数绘制基础森林图:
p <- forest(dt[, c(1:3, 8:9)],
est = dt$est,
lower = dt$low,
upper = dt$hi,
sizes = dt$se,
ci_column = 4,
ref_line = 1,
arrow_lab = c("Placebo Better", "Treatment Better"),
xlim = c(0, 4),
ticks_at = c(0.5, 1, 2, 3),
footnote = "示例数据说明")
plot(p)
关键参数说明:
est
: 点估计值lower/upper
: 置信区间上下限ci_column
: 指定绘制置信区间的列ref_line
: 参考线位置arrow_lab
: 箭头标签xlim
: x轴范围ticks_at
: x轴刻度位置
主题定制
forestploter提供了灵活的主题系统,可以自定义各种图形元素:
# 定义主题
tm <- forest_theme(base_size = 10,
ci_pch = 15, # 置信区间点形状
ci_col = "#762a83", # 置信区间颜色
ci_fill = "black", # 置信区间填充色
ci_lty = 1, # 置信区间线型
ci_lwd = 1.5, # 置信区间线宽
refline_gp = gpar(lwd = 1, lty = "dashed", col = "grey20"),
vertline_col = "grey20",
summary_fill = "#4575b4", # 汇总统计填充色
footnote_gp = gpar(cex = 0.6, fontface = "italic"))
# 应用主题绘图
pt <- forest(dt_tmp[, c(1:3, 8:9)],
theme = tm)
文本对齐与背景设置
通过主题系统可以控制文本对齐方式和单元格背景:
# 右对齐文本
tm <- forest_theme(core = list(fg_params = list(hjust = 1, x = 0.9),
bg_params = list(fill = c("#edf8e9", "#c7e9c0"))),
colhead = list(fg_params = list(hjust = 0.5, x = 0.5)))
# 混合对齐方式
tm <- forest_theme(core = list(fg_params = list(hjust = c(1, 0, 0.5),
x = c(0.9, 0.1, 0.5))))
多列置信区间
forestploter支持在同一图中绘制多列置信区间:
# 准备多组数据
dt$`CVD outcome` <- paste(rep(" ", 20), collapse = " ")
dt$`COPD outcome` <- paste(rep(" ", 20), collapse = " ")
# 绘制多列置信区间
p <- forest(dt[, c(1, 19, 23, 21, 20, 24, 22)],
est = list(dt$est_gp1, dt$est_gp2, dt$est_gp3, dt$est_gp4),
lower = list(dt$low_gp1, dt$low_gp2, dt$low_gp3, dt$low_gp4),
upper = list(dt$hi_gp1, dt$hi_gp2, dt$hi_gp3, dt$hi_gp4),
ci_column = c(4, 7))
高级技巧:自定义置信区间
forestploter允许用户自定义置信区间的绘制方式:
# 使用内置箱线图函数
p <- forest(dat[, c(1, 7, 2:6)],
est = list(dat$med),
lower = list(dat$min),
upper = list(dat$max),
fn_ci = make_boxplot,
ci_column = 2,
index_args = c("q1", "q3"))
总结
forestploter提供了高度灵活的森林图绘制功能,主要特点包括:
- 表格化的布局控制
- 丰富的主题定制选项
- 多列置信区间支持
- 绘制后编辑能力
- 自定义图形元素能力
通过合理使用这些功能,用户可以创建出满足各种专业需求的森林图,适用于医学研究、元分析等多种场景。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287