探索OpenCV的额外模块:opencv_contrib的无限可能
2024-08-08 12:53:50作者:裴锟轩Denise
在计算机视觉领域,OpenCV是一个不可或缺的库,提供了丰富的函数和模块来处理图像和视频。而opencv_contrib
仓库则为这个强大的库增添了更多实验性和创新性的功能。这篇文章将引导您了解并开始利用这些额外的模块,发掘它们在实际应用中的潜力。
项目介绍
opencv_contrib
是OpenCV官方的一个分支,专门用于开发“额外”模块,即那些还在不断迭代和完善的功能模块。这些模块通常拥有不稳定的API,并且可能未经充分测试,因此不适合直接集成到OpenCV的主要发行版中。相反,它们在这里先进行孵化,随着成熟和影响力的增加,一些模块会被移入核心OpenCV库,以得到高质量的支持和维护。
技术分析
构建OpenCV时,您可以轻松地添加这些额外模块。只需在CMake配置阶段指定OPENCV_EXTRA_MODULES_PATH
指向opencv_contrib
的modules
目录即可:
$ cd <opencv_build_directory>
$ cmake -DOPENCV_EXTRA_MODULES_PATH=<opencv_contrib>/modules <opencv_source_directory>
$ make -j5
如果您只想构建特定的模块,可以通过设置BUILD_opencv_***
选项来实现。例如,要禁建opencv_legacy
模块:
$ cmake -DOPENCV_EXTRA_MODULES_PATH=<opencv_contrib>/modules -DBUILD_opencv_legacy=OFF <opencv_source_directory>
对于使用图形界面的CMake(cmake-gui)用户,过程也相当直观,只需调整相应参数即可。
应用场景
opencv_contrib
包含了一系列丰富多样的模块,涵盖了从对象检测、识别到三维重建等多个领域。这些模块可以广泛应用于以下场景:
- aruco: 基于ArUco标志的定位和跟踪,适用于机器人导航或增强现实应用。
- face: 提供面部检测和识别算法,可用于人像识别系统或安全监控。
- xfeatures2d: 提供多种特征检测和描述符,如SIFT、SURF等,适用于图像匹配和图像检索。
- ximgproc: 图像处理算法,如快速双边滤波器和结构化光照模型,能提升图像处理效果。
这些只是冰山一角,还有更多模块等待开发者们去探索和利用。
项目特点
- 前沿性: 这些额外模块反映了最新的研究成果和技术趋势。
- 灵活性: 用户可以选择性地构建和使用这些模块,适应不同的项目需求。
- 文档完善: 每个模块都有详细的README文件,指导用户如何使用和理解其中的功能。
- 社区支持: 开放源代码意味着全球的开发者都可以贡献自己的力量,使得问题的解决和改进变得更迅速。
通过opencv_contrib
,开发者能够获得更全面的工具集,推动计算机视觉应用的边界。无论您是研究者还是工程师,都将从中受益良多。立即尝试构建带有额外模块的OpenCV,开启您的计算机视觉之旅吧!
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5