LightRAG v1.3.2版本发布:图数据库性能优化与文档处理增强
LightRAG是一个基于知识图谱的检索增强生成(RAG)框架,它通过结合结构化知识图谱和非结构化文本数据,为大型语言模型提供更精准的知识支持。该系统能够自动从文档中提取实体和关系构建知识图谱,并通过向量检索与图查询相结合的方式提升问答系统的准确性和可解释性。
核心性能优化
本次v1.3.2版本在图数据库查询性能方面做出了重大改进。开发团队针对Neo4j和PostgreSQL AGE两种主流图数据库进行了深度优化:
-
Neo4j批量处理优化:通过引入UNWIND操作实现了批量数据处理,显著减少了网络往返次数。这种优化特别适合处理大规模知识图谱中的复杂查询场景,如多跳关系查询和子图匹配。
-
PostgreSQL AGE性能提升:解决了特殊字符(如反斜杠)处理问题,优化了子查询执行计划。同时增加了多进程环境下的图数据库锁机制(graph_db_lock),确保在高并发场景下数据的一致性。
-
文档处理流水线改进:采用python-docx库替代原有解析方案,提升了对Word文档的处理能力。新解析器能更好地保留文档原始结构信息,如段落、表格和样式,为后续的知识提取提供更准确的输入。
功能增强与用户体验
-
知识图谱可视化编辑:WebUI现在支持直接编辑节点和边的名称与描述,降低了知识图谱维护门槛。同时改进了节点颜色按类型区分显示的功能,使图谱可视化更加直观。
-
查询测试增强:新增了流式响应支持,用户可以实时观察LLM生成过程。同时修复了历史对话轮次在测试界面不生效的问题,提升了对话连贯性测试体验。
-
混合查询优化:改进了mix_kg_vector_query接口,确保在only_need_context模式下返回正确的上下文结构。新增了bypass查询模式,为特定场景提供更灵活的查询控制。
系统配置与管理
-
缓存机制完善:新增ENABLE_LLM_CACHE环境变量控制LLM缓存开关,修复了节点/边合并时缓存不生效的问题。即使禁用缓存,系统现在也能正确保存历史记录。
-
模型集成扩展:为Ollama模型模拟器增加了/context查询前缀支持,优化了本地模型集成体验。同时通过OPENAI_API_BASE环境变量提供了更灵活的基础API配置。
-
多语言支持:新增繁体中文语言包,配合已有的简体中文和英文支持,满足更广泛用户群体的需求。
稳定性与可靠性改进
-
错误处理增强:实现了任务取消机制,当任一文档块处理失败时会自动取消所有相关pending任务,避免资源浪费。同时完善了空值处理逻辑,防止异常传播。
-
合并策略优化:在知识提取(gleaning)阶段,系统现在仅合并新增的实体和边,避免不必要的重复处理。新增FORCE_LLM_SUMMARY_ON_MERGE环境变量,强制在合并时使用LLM生成摘要。
-
超时处理修复:解决了因global_args.timeout为None导致的运行错误,确保所有异步操作都有合理的超时控制。
本次更新体现了LightRAG团队对系统性能、稳定性和用户体验的持续关注。特别是图数据库查询性能的优化,为处理大规模知识图谱提供了更好的基础。新增的WebUI编辑功能和流式响应支持,使得知识维护和测试更加高效直观。这些改进共同推动LightRAG向更成熟的企业级知识管理解决方案迈进。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00