PyTorch Vision视频分类数据集缓存加载问题解析
问题背景
在使用PyTorch Vision的视频分类参考训练代码时,开发者遇到了一个关于数据集缓存加载的技术问题。当尝试加载已缓存的视频分类数据集时,系统抛出了一个与权重安全加载相关的错误,导致训练流程中断。
错误现象
具体错误表现为当代码尝试使用torch.load加载缓存文件时,系统提示"Unsupported global: GLOBAL datasets.KineticsWithVideoId was not an allowed global by default"。这个错误源于PyTorch 2.5.0版本引入的安全机制,当使用weights_only=True参数时,系统会限制可以加载的全局对象类型,以防范潜在的恶意代码执行风险。
技术原理分析
PyTorch从2.5.0版本开始强化了模型和数据集加载的安全性。weights_only=True参数的设计初衷是防止反序列化过程中执行任意代码,确保加载过程的安全性。然而,这种安全机制也会对一些合法的自定义类造成限制。
在视频分类训练场景中,KineticsWithVideoId是一个自定义的数据集类,它继承自PyTorch的标准数据集类,用于处理Kinetics视频数据集。当这个类被序列化到缓存文件中后,使用安全模式加载时就会被系统阻止。
解决方案
针对这个问题,开发者提供了两种解决方案:
-
移除安全限制:直接移除
weights_only=True参数,允许加载所有类型的对象。这种方法简单直接,但需要确保缓存文件的来源可信。 -
显式添加安全全局类:使用
torch.serialization.add_safe_globals([KineticsWithVideoId])将自定义数据集类添加到安全名单中。这种方法既保持了安全性,又允许加载特定的自定义类。
在实际应用中,第一种方案更为简便,特别是在开发环境或可信来源的情况下。PyTorch Vision团队已经通过提交的代码修改采用了这一方案。
最佳实践建议
对于类似的技术场景,我们建议开发者:
-
在开发阶段可以暂时关闭安全限制,但生产环境中应谨慎评估风险。
-
对于长期使用的自定义类,考虑将其注册为安全全局类,既保证安全性又不影响功能。
-
定期检查PyTorch的版本更新,了解安全机制的变化。
-
对于关键训练任务,建议实现缓存验证机制,确保缓存文件的完整性和安全性。
总结
PyTorch Vision视频分类训练中的这一缓存加载问题,反映了深度学习框架在安全性和功能性之间的平衡考量。通过理解PyTorch的安全机制原理,开发者可以更灵活地处理类似的技术挑战,既保证训练流程的顺畅,又不牺牲系统的安全性。这一案例也为处理其他自定义类的序列化问题提供了参考思路。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00