Apache RocketMQ Python客户端使用指南
2024-09-02 23:46:22作者:董斯意
一、项目目录结构及介绍
Apache RocketMQ是一个分布式消息和服务端到端异步通信中间件,其Python客户端提供了灵活的消息发送与接收功能。以下为其GitHub仓库的主要目录结构及简介:
rocketmq-client-python/
│
├── AUTHORS.txt # 作者列表
├── CHANGES.md # 版本更新日志
├── CONTRIBUTORS.md # 贡献者列表
├── Docs # 文档目录,包括API文档等
│ ├── api.rst # API参考文档
│
├── rocketmq_client # 主要源码目录
│ ├── __init__.py # 初始化文件
│ ├── consumer.py # 消费者相关实现
│ ├── constants.py # 常量定义
│ ├── exception.py # 异常处理
│ ├── message.py # 消息模型
│ └── producer.py # 生产者相关实现
│
├── setup.cfg # 配置文件,用于pip安装时的元数据
├── setup.py # 安装脚本
├── tests # 测试目录,包含单元测试等
│
└── tox.ini # Tox工具配置文件,用于多环境测试
核心模块说明:
rocketmq_client: 包含了RocketMQ Python客户端的核心类和方法,如生产者(Producer)、消费者(Consumer)以及消息(Message)等。
二、项目的启动文件介绍
在RocketMQ Python客户端中,并没有一个特定的“启动文件”,因为它的使用依赖于用户的实际应用集成。通常,用户会在自己的应用程序中导入并初始化RocketMQ客户端对象来发送或接收消息。例如,一个简单的使用场景可能会从你的主要应用代码中开始,如下所示:
from rocketmq_client import Producer, Message
def send_message():
producer = Producer('your-producer-group')
producer.set_name_server_address("localhost:9876") # 设置Name Server地址
producer.start()
msg = Message('TopicTest') # 创建消息实例
msg.set_keys('key1') # 设置消息键
msg.set_body('Hello RocketMQ Python') # 设置消息体
result = producer.send(msg) # 发送消息
print(result)
producer.shutdown()
if __name__ == '__main__':
send_message()
三、项目的配置文件介绍
RocketMQ Python客户端本身并不直接要求外部配置文件,而是通过代码直接设置参数。这意味着配置信息(比如NameServer地址、组名等)通常是动态提供的。然而,在更复杂的部署环境中,用户可能希望将这些参数外部化管理。这种情况下,配置可以通过环境变量或者自定义配置模块读取后再传入客户端。
- 示例配置方式:
- 环境变量设置:
export ROCKETMQ_NAMESERVER=127.0.0.1:9876 - 自定义配置文件(伪代码示例):
config = { 'name_server': '127.0.0.1:9876', 'producer_group': 'YourProducerGroup' } # 在程序中使用配置 producer = Producer(config['producer_group']) producer.set_name_server_address(config['name_server'])
- 环境变量设置:
综上所述,虽然Apache RocketMQ Python客户端不直接使用传统意义上的配置文件进行管理,但通过代码调用和环境变量等方式提供了灵活的配置选项以满足不同的使用需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
527
3.72 K
Ascend Extension for PyTorch
Python
334
398
暂无简介
Dart
768
191
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
881
589
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
170
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
749
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246