NVIDIA k8s-device-plugin 0.15.0-rc.2版本安装问题分析与解决方案
问题背景
在使用Kubernetes集群部署NVIDIA设备插件时,用户遇到了一个典型问题:在Ubuntu 22.04.4 LTS系统上,使用Kubernetes v1.28.6版本部署NVIDIA k8s-device-plugin的0.15.0-rc.2版本时,DaemonSet无法正常调度Pod到节点上,而回退到0.14.5版本则可以正常工作。
问题现象分析
当用户尝试部署0.15.0-rc.2版本时,发现两个DaemonSet(nvdp-nvidia-device-plugin和nvdp-nvidia-device-plugin-mps-control-daemon)的"Desired Number of Nodes Scheduled"和"Current Number of Nodes Scheduled"均为0,这意味着没有任何Pod被调度到节点上运行。
相比之下,0.14.5版本能够正常调度Pod到所有16个节点上。通过对比两个版本的DaemonSet描述信息,可以发现关键差异在于节点选择器的配置。
根本原因
经过深入分析,发现问题根源在于0.15.0-rc.2版本引入了更严格的节点选择条件。新版本默认要求节点必须具有"nvidia.com/gpu.present=true"标签才会被调度,而用户的节点虽然确实配备了NVIDIA GPU,但并未设置这一特定标签。
这种设计变更反映了NVIDIA设备插件项目在版本演进过程中对部署规范性的要求提高。通过显式要求节点标记,可以确保插件只部署在确实配置了NVIDIA GPU的节点上,避免在不必要的节点上运行资源消耗。
解决方案
解决此问题的方法非常简单:为所有配备NVIDIA GPU的节点添加所需的标签。可以使用以下命令批量操作:
for i in $(seq 1 16); do
kubectl label node node${i} nvidia.com/gpu.present=true
done
这一操作明确告知Kubernetes调度器哪些节点具备NVIDIA GPU能力,使得设备插件能够正确识别并部署到这些节点上。
版本差异的技术考量
从技术架构角度看,0.15.0-rc.2版本相比0.14.5版本有几个重要改进:
- 更精确的资源定位:通过强制要求节点标签,确保插件只部署在真正需要的节点上
- MPS支持:新版本增加了对Multi-Process Service的支持,提供了mps-control-daemon组件
- 环境变量扩展:新增了NVIDIA_VISIBLE_DEVICES和NVIDIA_DRIVER_CAPABILITIES等环境变量配置
- CDI支持:增加了对Container Device Interface的挂载点支持
这些改进使得新版本在功能性和可靠性方面都有显著提升,但也带来了配置要求的变化。
最佳实践建议
基于这一案例,我们建议在部署NVIDIA设备插件时注意以下几点:
- 版本升级前检查变更日志:了解新版本的特性和配置要求变化
- 统一节点标签规范:建立明确的节点标签策略,特别是对于异构计算资源
- 分阶段部署:在生产环境中先小范围验证新版本,确认无误后再全面升级
- 文档参考:仔细阅读对应版本的部署文档,了解新增的配置选项
通过遵循这些实践,可以确保NVIDIA设备插件的平滑升级和稳定运行,为GPU加速的工作负载提供可靠的基础设施支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00