Kotlin AI 示例项目:使用 Spring AI 与 Kotlin 开发 AI 应用指南
2025-06-09 23:38:50作者:段琳惟
前言
在现代应用开发中,人工智能(AI)功能已成为提升用户体验和产品智能化水平的关键要素。本文将详细介绍如何在 Kotlin 项目中利用 Spring AI 框架与大型语言模型(LLM)进行交互,实现各种智能功能。
环境准备
依赖配置
首先需要在项目中添加 Spring AI 相关依赖:
dependencies {
implementation("org.springframework.ai:spring-ai-openai")
implementation("com.fasterxml.jackson.module:jackson-module-kotlin:2.18.2")
}
API 密钥设置
使用 OpenAI 服务需要配置 API 密钥,可以通过环境变量或直接赋值:
val apiKey = System.getenv("OPENAI_API_KEY") ?: "YOUR_OPENAI_API_KEY"
基础配置
创建聊天模型
配置 OpenAI 聊天模型的基本参数:
val openAiApi = OpenAiApi.builder().apiKey(apiKey).build()
val openAiChatOptions = OpenAiChatOptions.builder()
.model(OpenAiApi.ChatModel.GPT_4_O_MINI)
.temperature(0.7)
.build()
val chatModel = OpenAiChatModel.builder()
.openAiApi(openAiApi)
.defaultOptions(openAiChatOptions)
.build()
参数说明:
model: 指定使用的 AI 模型版本temperature: 控制生成文本的随机性(0-1),值越高结果越多样
基本交互
发送简单提示
val response = chatModel.call("生成一首关于 Kotlin 的俳句")
println(response)
使用 ChatClient 增强交互
可以配置系统角色指令,让 AI 以特定风格响应:
val chatClient = ChatClient.builder(chatModel).defaultSystem(
"""
你是一位《指环王》专家和可信赖的顾问。
以中土世界的风格提供明智、简洁的指导,
借鉴其传说、人物和哲学。
""".trimIndent()
).build()
val advice = chatClient
.prompt()
.user("未来会怎样?")
.call()
.content()
println(advice)
高级功能
流式响应处理
对于长文本生成,使用流式响应可以提升用户体验:
import kotlinx.coroutines.reactive.asFlow
import kotlinx.coroutines.runBlocking
val streamingResponse: Flow<String> = chatModel
.stream("生成一首关于 Kotlin 的俳句")
.asFlow()
runBlocking {
streamingResponse.collect { chunk ->
print(chunk)
}
}
结构化输出
Spring AI 支持将响应自动转换为 Kotlin 数据类:
- 定义数据模型:
data class Movie(
val title: String,
val year: Int,
val director: String,
val genre: String
)
- 配置 JSON 响应格式:
val structuredOutputOptions = OpenAiChatOptions.builder()
.model(OpenAiApi.ChatModel.GPT_4_O_MINI)
.responseFormat(ResponseFormat.builder()
.type(ResponseFormat.Type.JSON_OBJECT)
.build())
.build()
- 获取结构化响应:
val movie = ChatClient.create(chatModelWithStructuredOutput)
.prompt()
.user("1990年获得奥斯卡最佳影片的电影")
.call()
.entity<Movie>()
工具集成
Spring AI 支持通过工具扩展模型功能:
- 定义模拟天气服务:
fun mockWeatherService(location: String): Double? = when {
"Paris" in location -> 15.0
"Tokyo" in location -> 10.0
"San Francisco" in location -> 30.0
else -> null
}
- 创建工具定义:
val functionTool = OpenAiApi.FunctionTool(
OpenAiApi.FunctionTool.Type.FUNCTION,
OpenAiApi.FunctionTool.Function(
"获取指定位置的当前温度",
"getCurrentWeather",
ModelOptionsUtils.jsonToMap(
"""
{
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "城市和国家,例如:中国北京"
}
},
"required": ["location"],
"additionalProperties": false
}
""".trimIndent()
),
true
)
)
- 使用工具进行交互:
val initialUserMessage = ChatCompletionMessage(
"巴黎今天的天气如何?",
ChatCompletionMessage.Role.USER
)
val chatCompletionRequest = ChatCompletionRequest(
listOf(initialUserMessage), "gpt-4o",
listOf(functionTool), ToolChoiceBuilder.AUTO
)
val chatCompletion = openAiApi.chatCompletionEntity(chatCompletionRequest)
val responseFromLLM = chatCompletion.body!!.choices().first().message()
最佳实践
-
模型选择:根据需求平衡模型性能和成本,GPT-4 通常比 GPT-3.5 更准确但更昂贵
-
错误处理:始终验证 AI 返回的结构化数据,实现回退机制
-
性能优化:
- 对于实时交互使用流式响应
- 缓存常见查询结果
- 合理设置 temperature 参数
-
用户体验:
- 为长时间操作提供加载指示
- 处理 AI 可能产生的幻觉或不准确信息
- 实现对话上下文管理
结语
通过 Spring AI 框架,Kotlin 开发者可以轻松地将强大的 AI 功能集成到应用中。本文介绍了从基础配置到高级功能的完整流程,包括流式响应、结构化输出和工具集成等关键特性。随着 AI 技术的快速发展,这些功能将为应用开发带来更多可能性。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492