Kotlin AI 示例项目:使用 Spring AI 与 Kotlin 开发 AI 应用指南
2025-06-09 21:30:19作者:段琳惟
前言
在现代应用开发中,人工智能(AI)功能已成为提升用户体验和产品智能化水平的关键要素。本文将详细介绍如何在 Kotlin 项目中利用 Spring AI 框架与大型语言模型(LLM)进行交互,实现各种智能功能。
环境准备
依赖配置
首先需要在项目中添加 Spring AI 相关依赖:
dependencies {
implementation("org.springframework.ai:spring-ai-openai")
implementation("com.fasterxml.jackson.module:jackson-module-kotlin:2.18.2")
}
API 密钥设置
使用 OpenAI 服务需要配置 API 密钥,可以通过环境变量或直接赋值:
val apiKey = System.getenv("OPENAI_API_KEY") ?: "YOUR_OPENAI_API_KEY"
基础配置
创建聊天模型
配置 OpenAI 聊天模型的基本参数:
val openAiApi = OpenAiApi.builder().apiKey(apiKey).build()
val openAiChatOptions = OpenAiChatOptions.builder()
.model(OpenAiApi.ChatModel.GPT_4_O_MINI)
.temperature(0.7)
.build()
val chatModel = OpenAiChatModel.builder()
.openAiApi(openAiApi)
.defaultOptions(openAiChatOptions)
.build()
参数说明:
model
: 指定使用的 AI 模型版本temperature
: 控制生成文本的随机性(0-1),值越高结果越多样
基本交互
发送简单提示
val response = chatModel.call("生成一首关于 Kotlin 的俳句")
println(response)
使用 ChatClient 增强交互
可以配置系统角色指令,让 AI 以特定风格响应:
val chatClient = ChatClient.builder(chatModel).defaultSystem(
"""
你是一位《指环王》专家和可信赖的顾问。
以中土世界的风格提供明智、简洁的指导,
借鉴其传说、人物和哲学。
""".trimIndent()
).build()
val advice = chatClient
.prompt()
.user("未来会怎样?")
.call()
.content()
println(advice)
高级功能
流式响应处理
对于长文本生成,使用流式响应可以提升用户体验:
import kotlinx.coroutines.reactive.asFlow
import kotlinx.coroutines.runBlocking
val streamingResponse: Flow<String> = chatModel
.stream("生成一首关于 Kotlin 的俳句")
.asFlow()
runBlocking {
streamingResponse.collect { chunk ->
print(chunk)
}
}
结构化输出
Spring AI 支持将响应自动转换为 Kotlin 数据类:
- 定义数据模型:
data class Movie(
val title: String,
val year: Int,
val director: String,
val genre: String
)
- 配置 JSON 响应格式:
val structuredOutputOptions = OpenAiChatOptions.builder()
.model(OpenAiApi.ChatModel.GPT_4_O_MINI)
.responseFormat(ResponseFormat.builder()
.type(ResponseFormat.Type.JSON_OBJECT)
.build())
.build()
- 获取结构化响应:
val movie = ChatClient.create(chatModelWithStructuredOutput)
.prompt()
.user("1990年获得奥斯卡最佳影片的电影")
.call()
.entity<Movie>()
工具集成
Spring AI 支持通过工具扩展模型功能:
- 定义模拟天气服务:
fun mockWeatherService(location: String): Double? = when {
"Paris" in location -> 15.0
"Tokyo" in location -> 10.0
"San Francisco" in location -> 30.0
else -> null
}
- 创建工具定义:
val functionTool = OpenAiApi.FunctionTool(
OpenAiApi.FunctionTool.Type.FUNCTION,
OpenAiApi.FunctionTool.Function(
"获取指定位置的当前温度",
"getCurrentWeather",
ModelOptionsUtils.jsonToMap(
"""
{
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "城市和国家,例如:中国北京"
}
},
"required": ["location"],
"additionalProperties": false
}
""".trimIndent()
),
true
)
)
- 使用工具进行交互:
val initialUserMessage = ChatCompletionMessage(
"巴黎今天的天气如何?",
ChatCompletionMessage.Role.USER
)
val chatCompletionRequest = ChatCompletionRequest(
listOf(initialUserMessage), "gpt-4o",
listOf(functionTool), ToolChoiceBuilder.AUTO
)
val chatCompletion = openAiApi.chatCompletionEntity(chatCompletionRequest)
val responseFromLLM = chatCompletion.body!!.choices().first().message()
最佳实践
-
模型选择:根据需求平衡模型性能和成本,GPT-4 通常比 GPT-3.5 更准确但更昂贵
-
错误处理:始终验证 AI 返回的结构化数据,实现回退机制
-
性能优化:
- 对于实时交互使用流式响应
- 缓存常见查询结果
- 合理设置 temperature 参数
-
用户体验:
- 为长时间操作提供加载指示
- 处理 AI 可能产生的幻觉或不准确信息
- 实现对话上下文管理
结语
通过 Spring AI 框架,Kotlin 开发者可以轻松地将强大的 AI 功能集成到应用中。本文介绍了从基础配置到高级功能的完整流程,包括流式响应、结构化输出和工具集成等关键特性。随着 AI 技术的快速发展,这些功能将为应用开发带来更多可能性。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193