AniPortrait项目中的视频姿态重定向技术解析
AniPortrait是一个基于深度学习的肖像动画生成项目,能够将静态参考图像与动态视频中的姿态序列相结合,生成具有自然动作的新视频。本文将深入分析该项目的核心技术要点,特别是视频姿态重定向的实现方法。
输入数据预处理要求
在AniPortrait项目中,输入数据的正确处理对生成效果至关重要。主要需要注意以下几点:
-
参考图像选择:推荐使用中性表情的肖像作为参考图像,避免选择张嘴或其他夸张表情的图像。中性表情有助于模型更好地学习面部特征迁移。
-
视频裁剪处理:源视频需要裁剪为正方形(512x512)格式。这是因为模型内部会将输入统一调整为512x512分辨率,非正方形的输入会导致人脸变形,影响生成质量。
-
姿态对齐:虽然项目最新版本已经放宽了对齐要求,但理想情况下,参考图像和源视频中的人脸位置应保持基本一致,特别是眼睛和嘴巴等关键特征点的相对位置。
姿态重定向技术演进
AniPortrait项目经历了重要的技术迭代,在姿态重定向方面取得了显著进步:
-
早期版本限制:最初版本要求参考图像和源视频的姿态必须高度一致,这在实际应用中造成了诸多不便。
-
改进后的策略:最新版本采用了更先进的姿态重定向算法,现在可以处理参考图像与源视频之间存在较大姿态差异的情况。这一改进大大提升了系统的实用性和灵活性。
实际应用建议
基于项目经验,我们总结出以下优化生成效果的建议:
-
面部居中原则:将人脸放置在画面中心区域,可以想象将画面分为3x3网格,使人脸位于中央格子内。
-
半身肖像格式:将参考图像和视频处理为半身肖像形式,保持正方形尺寸,这样能获得最佳效果。
-
避免极端表情:源视频中过于夸张的表情可能会导致生成效果不稳定,建议选择表情变化自然的视频素材。
AniPortrait的这些技术进步为肖像动画生成开辟了新的可能性,使得从简单的静态照片创建生动的动画肖像变得更加容易和可靠。随着技术的不断发展,我们期待看到更多创新和改进,进一步提升生成视频的质量和自然度。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00