OpenBLAS 0.3.29版本发布:性能优化与跨平台支持全面升级
OpenBLAS是一个高性能的基础线性代数子程序库(BLAS),它针对各种处理器架构进行了高度优化。作为科学计算和机器学习领域的基础组件,OpenBLAS为矩阵运算、向量操作等提供了高效的实现。最新发布的0.3.29版本带来了多项重要改进,包括性能优化、错误修复以及对新硬件平台的支持。
核心架构改进
本次更新在基础架构层面进行了多项重要改进。首先解决了多线程构建中可能出现的空指针解引用问题,增强了库的稳定性。同时增加了GEMMT函数的别名GEMMTR,以保持与Reference-BLAS的兼容性。对于使用CMake构建的项目,最低CMake版本要求提升至3.16.0,消除了许多兼容性和废弃警告。
在多线程性能方面,SBGEMV(单精度带状矩阵向量乘法)和TRTRI(三角矩阵求逆)的线程扩展性得到了显著改善。此外,还修复了多线程BLAS3调用中可能出现的精度问题,确保了计算结果的准确性。
跨平台与编译器支持
0.3.29版本显著扩展了对不同平台和编译器的支持:
- 新增了对NAG Fortran编译器的支持
- 针对LLVM18及更高版本的flang-new编译器改进了选项处理
- 适应了Cray和NVIDIA编译器的最新调用约定变化
- 修复了Windows on Arm平台的编译问题
- 增加了对IOS系统和NetBSD(evbarm架构)的支持
- 解决了使用NVIDIA编译器编译SVE目标时的问题
各架构专项优化
ARM64架构
ARM64平台获得了多项重要更新,包括修复了c/zgemm_beta内核中长期存在的数组越界问题,重写了CPU自动检测逻辑以扫描所有核心并返回最高性能类型。对于SVE(可伸缩向量扩展)目标,DGEMM(双精度矩阵乘法)在小矩阵情况下的性能得到提升,并新增了ROT和SWAP操作的SVE内核。
特别值得注意的是,SGEMV和DGEMV(单/双精度矩阵向量乘法)在A64FX和NEOVERSEV1处理器上的SVE内核性能得到优化,同时增加了对Apple M4处理器的自动检测和初步支持。
x86_64架构
x86_64平台修复了Cooper Lake架构上SBGEMV内核的存储大小问题,增加了对Intel Granite Rapids和AMD Ryzen 5系列处理器的自动检测。新增了针对AVX目标的优化SOMATCOPY_CT(单精度矩阵转置复制)实现,并重新启用了EXPRECISION选项的构建。
POWER架构
POWER平台修复了多线程SBGEMM(单精度带状矩阵乘法)的问题,改进了SGEMV性能,并增加了向量化的SBGEMV实现。特别针对POWER10处理器,新增了优化的CGEMM和ZGEMM(单/双精度复数矩阵乘法)内核。
其他架构
MIPS64、Loongarch64和RISC-V架构也获得了多项改进。Loongarch64平台新增了LASX目标的优化SOMATCOPY实现,并引入了新的CPU命名方案。RISC-V平台则优化了SNRM2/DNRM2(单/双精度向量2范数)在RVV1.0目标上的性能,并修复了多个实现问题。
构建系统与工具链改进
构建系统方面,0.3.29版本修复了pkgconfig文件中-fopenmp标志和libsuffix的放置问题,改进了Makefile构建生成的CMakeConfig文件。新增了单独的"make install_tests"目标,便于交叉编译场景下的使用。
对于开发者而言,修复了使用gcc14编译CBLAS测试套件的问题,并改进了pybench基准测试的构建说明。文档方面增加了对WoA(Windows on Arm)和HarmonyOS的构建指导,以及影响构建和运行时行为的环境变量说明。
数值计算与API改进
在数值计算方面,修复了PPC架构上SSCAL和DSCAL(单/双精度向量缩放)处理NaN和Inf参数的问题,确保了特殊值的正确处理。API层面修正了cblas.h中cblas_?geadd的const正确性,并修复了转换后的LAPACK C版本中TRTRS(三角方程组求解)的函数签名。
总结
OpenBLAS 0.3.29版本是一个重要的维护更新,在多线程性能、跨平台支持和特定架构优化方面都有显著提升。特别是对ARM SVE扩展和RISC-V向量指令集的支持不断完善,使得OpenBLAS能够在更多新兴硬件平台上发挥最佳性能。对于科学计算和高性能计算应用开发者来说,升级到这个版本将获得更好的稳定性和性能表现。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00