首页
/ NNCF v2.17.0发布:模型量化与压缩技术全面升级

NNCF v2.17.0发布:模型量化与压缩技术全面升级

2025-07-06 02:19:30作者:乔或婵

项目简介

NNCF(Neural Network Compression Framework)是Intel开源的一个神经网络压缩框架,专注于为深度学习模型提供高效的量化与压缩解决方案。作为OpenVINO工具套件的重要组成部分,NNCF支持PyTorch、TensorFlow、ONNX等多种深度学习框架,能够显著减小模型体积、提升推理速度,同时保持模型精度。

核心更新内容

训练后量化技术增强

通用改进

在PyTorch后端中,function_hook模块现已从实验状态升级为默认模型追踪机制,并迁移至核心nncf.torch命名空间。这一变化使得模型量化过程更加稳定可靠。

新增特性

  1. 4位数据无关AWQ量化:本次更新在OpenVINO、PyTorch和TorchFX后端中引入了基于权重列幅度的4位AWQ(Activation-aware Weight Quantization)量化技术。这种创新方法无需依赖数据集即可实现更精确的压缩,特别适合资源受限的场景。

  2. OpenVINO FP8支持扩展:新增了对ScaledDotProductAttention中value输入的FP8量化支持,进一步扩展了低精度计算的应用范围。

  3. ONNX后端强化

    • 增加了使用INT4(INT8)进行数据无关权重压缩的支持
    • 新增了LLM权重压缩示例,展示了如何在ONNX格式下优化TinyLlama-1.1B-Chat-v0.3模型
    • 引入了BackendParameters.EXTERNAL_DATA_DIR参数,用于指定模型外部数据文件的存储路径,提升了大型模型处理的灵活性
  4. TorchFX实验性功能:增加了4位权重压缩支持,结合AWQ和Scale Estimation数据感知方法,有效减少了精度损失。

问题修复与优化

  • 简化了TorchFX的使用流程,移除了不必要的nncf.torch.disable_patching()上下文管理器
  • 修复了无批次维度模型的BiasCorrection失败问题
  • 对齐了NF4与OpenVINO实现的quantile centers
  • 优化了权重压缩统计信息显示,现在能正确展示忽略权重的数据类型
  • 显著提升了NF4权重压缩性能,速度提升高达10倍
  • 确保nncf.data.generate_text_data支持transformer>4.52版本

压缩感知训练创新

突破性功能

本次更新引入了结合可吸收弹性LoRA适配器和神经低秩搜索(NLS)的量化感知训练(QAT)方法。这种新颖的权重压缩技术专门针对下游任务设计,相比NNCF中现有的最佳训练后权重压缩技术(Scale Estimation + AWQ + GPTQ),能显著减少int4权重LLM在下游任务中的精度损失。

新增的nncf.compress_weights API中提供了nncf.CompressionFormat.FQ_LORA_NLS压缩格式选项,开发者可以轻松体验这一前沿技术。示例QAT压缩管道展示了如何在下游任务中应用这一方法,与上一版本专注于通过知识蒸馏提升通用精度的方案形成互补。

重要改进

  • 大幅缩小了Torch模型与其导出的OpenVINO等效模型之间的精度差距
  • 优化了"QAT + 可吸收LoRA"结合知识蒸馏的最佳检查点评估选择流程,现在使用Wikitext的验证分割评估调优后的Torch模型,而最终结果则在测试分割上使用OpenVINO模型测量

依赖项更新

  • 升级ONNX Runtime至1.21.1版本
  • 更新PyTorch至2.7.1、Torchvision至0.22.1
  • 移除了jstyleson依赖

技术价值与应用前景

NNCF v2.17.0的发布标志着模型压缩技术又向前迈进了一大步。特别是4位AWQ量化和QAT with LoRA/NLS这两项创新,为大型语言模型的高效部署提供了强有力的工具。

在实际应用中,开发者现在可以:

  1. 无需准备校准数据集即可获得高质量的4位量化模型
  2. 针对特定下游任务精细调整量化模型,最大限度保留任务相关精度
  3. 更灵活地处理ONNX格式的大型模型
  4. 体验显著提升的压缩速度和更稳定的量化过程

这些改进使得NNCF在边缘计算、移动端部署等资源受限场景中更具竞争力,为AI模型的普惠化应用铺平了道路。随着量化技术的不断成熟,我们有望看到更多复杂模型能够在消费级硬件上高效运行,推动AI技术在各行业的深入应用。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
261
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300
kernelkernel
deepin linux kernel
C
22
5
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K