Vizro项目在Kaggle环境下的部署解决方案
2025-06-27 14:25:45作者:鲍丁臣Ursa
背景介绍
Vizro是一个基于Python的数据可视化仪表盘构建框架,它能够帮助数据科学家和分析师快速创建交互式数据可视化应用。然而,在Kaggle这样的云端Jupyter Notebook环境中部署Vizro应用时会遇到一些特殊的技术挑战。
问题分析
在Kaggle Notebook中运行Vizro应用时,虽然控制台显示Dash应用已在本地端口8050启动,但实际上无法通过浏览器访问。经过排查发现,这是由于Kaggle环境的安全限制和网络隔离机制导致的。Kaggle Notebook运行在一个受限的容器环境中,不允许直接暴露本地端口到外部网络。
解决方案:使用Ngrok隧道
针对这一问题,我们可以使用Ngrok工具创建一个安全的隧道,将Kaggle内部的Vizro应用暴露到公网。以下是详细实现步骤:
1. 准备工作
首先需要注册Ngrok账号并获取认证令牌。这个令牌将用于建立安全连接。
2. 环境配置
在Kaggle Notebook中安装必要的Python包:
!pip install vizro pyngrok dash_ag_grid
3. 设置Ngrok认证
将Ngrok认证令牌存储在Kaggle Secrets中,确保安全性:
from kaggle_secrets import UserSecretsClient
from pyngrok import ngrok
ngrok.set_auth_token(UserSecretsClient().get_secret("ngrok_authtoken"))
4. 创建Vizro应用
构建一个标准的Vizro仪表盘应用:
import vizro.plotly.express as px
from vizro import Vizro
import vizro.models as vm
Vizro._reset() # 重置Vizro状态,便于多次运行
df = px.data.iris() # 示例数据集
page = vm.Page(
title="我的第一个仪表盘",
components=[
vm.Graph(id="散点图", figure=px.scatter(df, x="sepal_length", y="petal_width", color="species")),
vm.Graph(id="直方图", figure=px.histogram(df, x="sepal_width", color="species")),
],
controls=[
vm.Filter(column="species", selector=vm.Dropdown(value=["ALL"])),
],
)
dashboard = vm.Dashboard(pages=[page])
5. 启动应用并建立隧道
port = 8050
tunnel = ngrok.connect(port) # 建立Ngrok隧道
app = Vizro().build(dashboard)
app.run(host="0.0.0.0", port=port, jupyter_server_url=tunnel.public_url, jupyter_mode="tab")
技术原理
Ngrok通过在公网和本地环境之间建立安全的反向代理隧道,解决了Kaggle环境无法直接暴露端口的问题。当用户访问Ngrok提供的公网URL时,请求会被转发到Kaggle容器内部运行的Vizro应用。
注意事项
- Ngrok免费账户有并发连接数限制(3个),频繁重启可能导致达到限制
- 生成的URL是公开的,敏感数据应考虑额外安全措施
- 建议在开发原型阶段使用,生产环境应考虑专业部署方案
替代方案
除了Ngrok外,还可以考虑以下部署方式:
- 使用Render、Huggingface Spaces等专业PaaS平台
- 通过Docker容器化应用后部署到云服务
- 使用专门的Dash/Vizro托管服务
总结
通过Ngrok隧道技术,我们成功解决了Vizro在Kaggle环境中的部署难题。这种方法简单易行,特别适合快速原型开发和协作展示。对于更正式的项目,建议考虑专业的部署方案以获得更好的性能和安全性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
168
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.19 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92