Wazuh项目中eBPF与Auditd在FIM性能测试中的对比分析
2025-05-19 12:20:07作者:凌朦慧Richard
背景与测试目标
文件完整性监控(FIM)是安全防护体系中的重要组件。Wazuh项目作为开源安全解决方案,近期引入基于eBPF技术的who-data模式作为传统auditd的替代方案。本文通过对比测试,分析两种方案在事件捕获能力、资源消耗及处理效率上的表现差异,为技术选型提供参考。
测试环境与方法论
测试采用控制变量法,在以下两种硬件配置下执行:
- AMD平台:Ryzen 7 1700 (8核16线程)
- Intel平台:i9-12900HK (14核20线程)
测试场景统一采用50,000次文件删除操作(rm /test_folder/*),监控指标包括:
- 事件捕获率:成功记录的事件数量
- CPU消耗:均值与峰值占用
- 内存占用:工作集峰值
- 处理耗时:完成50K操作的总时间
核心数据对比
AMD平台表现
| 指标维度 | Auditd (4核) | eBPF (4核) |
|---|---|---|
| 事件捕获率 | 100% (50,000) | 100% (50,000) |
| CPU均值占用 | 123.91% | 124.5% |
| 内存峰值 | 96.9MB | 132.1MB |
| 处理耗时 | 62秒 | 26秒 |
Intel平台表现
| 指标维度 | Auditd (8核) | eBPF (8核) |
|---|---|---|
| 事件捕获率 | 100% (50,000) | 100% (50,000) |
| CPU均值占用 | 106.15% | 126.58% |
| 内存峰值 | 71.4MB | 127.3MB |
| 处理耗时 | 9秒 | 5秒 |
技术特性深度解析
Auditd的传统优势
- 低资源场景稳定性:在1-2核配置下,auditd表现出更稳定的事件捕获能力(AMD平台48,900 vs eBPF 22,967)
- 内存控制:内存占用普遍低于eBPF方案,尤其在低端硬件上差异显著(AMD平台96.9MB vs 132.1MB)
eBPF的技术突破
- 事件处理时效性:采用内核级事件触发机制,Intel平台处理速度提升44%(9秒→5秒)
- 高并发适应性:随着核心数增加,事件丢失率显著降低(4核时达到100%捕获)
- 现代硬件利用率:在Intel混合架构上表现出更好的核心调度能力
工程实践建议
- 边缘设备部署:建议1-2核设备优先采用auditd方案,避免eBPF可能的事件丢失
- 云原生环境:推荐eBPF方案,其快速响应特性更适合动态容器环境
- 混合架构优化:12代Intel及以上CPU建议启用eBPF,配合线程调度器可获得最佳性能
未来优化方向
测试暴露出eBPF在内存管理上的改进空间,建议关注:
- 环形缓冲区大小的动态调节
- 用户态事件处理程序的批处理优化
- 针对ARM架构的指令集优化
通过本次测试可以看出,Wazuh的eBPF实现已在处理速度上建立优势,后续版本需在资源消耗和稳定性上进一步打磨,以全面超越传统方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
93
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
724
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19