Wazuh项目中eBPF与Auditd在FIM性能测试中的对比分析
2025-05-19 02:22:12作者:凌朦慧Richard
背景与测试目标
文件完整性监控(FIM)是安全防护体系中的重要组件。Wazuh项目作为开源安全解决方案,近期引入基于eBPF技术的who-data模式作为传统auditd的替代方案。本文通过对比测试,分析两种方案在事件捕获能力、资源消耗及处理效率上的表现差异,为技术选型提供参考。
测试环境与方法论
测试采用控制变量法,在以下两种硬件配置下执行:
- AMD平台:Ryzen 7 1700 (8核16线程)
- Intel平台:i9-12900HK (14核20线程)
测试场景统一采用50,000次文件删除操作(rm /test_folder/*
),监控指标包括:
- 事件捕获率:成功记录的事件数量
- CPU消耗:均值与峰值占用
- 内存占用:工作集峰值
- 处理耗时:完成50K操作的总时间
核心数据对比
AMD平台表现
指标维度 | Auditd (4核) | eBPF (4核) |
---|---|---|
事件捕获率 | 100% (50,000) | 100% (50,000) |
CPU均值占用 | 123.91% | 124.5% |
内存峰值 | 96.9MB | 132.1MB |
处理耗时 | 62秒 | 26秒 |
Intel平台表现
指标维度 | Auditd (8核) | eBPF (8核) |
---|---|---|
事件捕获率 | 100% (50,000) | 100% (50,000) |
CPU均值占用 | 106.15% | 126.58% |
内存峰值 | 71.4MB | 127.3MB |
处理耗时 | 9秒 | 5秒 |
技术特性深度解析
Auditd的传统优势
- 低资源场景稳定性:在1-2核配置下,auditd表现出更稳定的事件捕获能力(AMD平台48,900 vs eBPF 22,967)
- 内存控制:内存占用普遍低于eBPF方案,尤其在低端硬件上差异显著(AMD平台96.9MB vs 132.1MB)
eBPF的技术突破
- 事件处理时效性:采用内核级事件触发机制,Intel平台处理速度提升44%(9秒→5秒)
- 高并发适应性:随着核心数增加,事件丢失率显著降低(4核时达到100%捕获)
- 现代硬件利用率:在Intel混合架构上表现出更好的核心调度能力
工程实践建议
- 边缘设备部署:建议1-2核设备优先采用auditd方案,避免eBPF可能的事件丢失
- 云原生环境:推荐eBPF方案,其快速响应特性更适合动态容器环境
- 混合架构优化:12代Intel及以上CPU建议启用eBPF,配合线程调度器可获得最佳性能
未来优化方向
测试暴露出eBPF在内存管理上的改进空间,建议关注:
- 环形缓冲区大小的动态调节
- 用户态事件处理程序的批处理优化
- 针对ARM架构的指令集优化
通过本次测试可以看出,Wazuh的eBPF实现已在处理速度上建立优势,后续版本需在资源消耗和稳定性上进一步打磨,以全面超越传统方案。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193