Kubernetes kube-state-metrics 中节点资源分配监控的实践与思考
在 Kubernetes 集群监控中,准确获取节点资源分配情况对于容量规划和调度决策至关重要。kube-state-metrics 作为 Kubernetes 资源状态指标的重要来源,其节点资源监控能力直接影响运维人员对集群资源利用率的判断。
核心问题分析
运维人员经常通过 kubectl describe node 命令查看节点的资源分配情况,其中"Allocated resources"部分显示了当前节点上所有Pod的资源请求总和。这个数值直接反映了节点的调度能力——当该值接近100%时,新的Pod将无法被调度到该节点。
然而,当尝试通过Prometheus查询获取相同信息时,使用标准指标 kube_pod_container_resource_requests 计算得到的总和往往会超过节点的实际容量。这是因为该指标包含了所有状态的Pod(包括已完成或失败的Pod),导致计算结果失真。
技术实现差异
kube-state-metrics 当前提供的节点相关指标基于 v1.Node 结构体,该结构体不包含资源请求和限制的聚合信息。而 kubectl describe node 展示的"Allocated resources"是通过计算节点上运行中Pod的资源请求总和得到的,这解释了两种方式获取数据不一致的原因。
解决方案探索
针对这一监控缺口,社区开发者提出了几种可能的解决方案:
-
在 kube-state-metrics 中新增
kube_node_resource_requests和kube_node_resource_limits指标,直接从节点状态获取准确的资源分配数据 -
开发专门的exporter来补充这一功能,如社区成员实现的kube-node-metrics项目,专门用于暴露节点的资源请求和限制信息
-
在查询时增加过滤条件,排除非运行状态的Pod,但这需要确保状态过滤的准确性
最佳实践建议
对于生产环境,建议采用以下监控策略:
- 对于关键业务集群,考虑部署专门的节点指标exporter作为临时解决方案
- 长期来看,推动kube-state-metrics增加原生节点资源分配指标支持
- 在Grafana中建立复合监控看板,结合多种指标交叉验证资源使用情况
- 设置合理的告警阈值,当资源请求总量达到节点容量的85%时触发预警
理解这些监控指标的差异和限制,有助于运维人员更准确地评估集群容量,做出合理的扩容或调度决策,确保业务应用的稳定运行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00