OpenBLAS在NVIDIA Grace(NeoVerseV2)平台上的构建指南
背景介绍
OpenBLAS是一个高性能的BLAS库实现,广泛应用于科学计算和机器学习领域。随着ARM架构处理器的发展,特别是NVIDIA推出的Grace处理器采用了Neoverse V2核心,开发者在构建OpenBLAS时可能会遇到一些特殊问题。
构建问题分析
在NVIDIA Grace平台上构建OpenBLAS 0.3.28版本时,开发者可能会遇到两个主要问题:
- 目标架构识别错误:当直接指定TARGET=NEOVERSEV2时,构建系统会报错,提示不支持该目标架构
- 配置文件缺失:构建过程中无法找到config.h文件
解决方案
针对这些问题,OpenBLAS官方给出了明确的解决方案:
-
使用通用目标架构:在DYNAMIC_ARCH构建模式下,应该使用更通用的CPU目标架构,如ARMV8或ARMV8SVE。这是因为TARGET参数主要用于确定共享代码的编译器选项,这些代码需要在所有目标计算机上运行。
-
动态架构支持:虽然OpenBLAS已经添加了对NeoverseV2 CPU的支持,但目前仅适用于DYNAMIC_ARCH构建模式。官方表示这是为了避免过多重复其他CPU的数据。
构建建议
对于NVIDIA Grace平台,推荐使用以下构建命令:
make TARGET=ARMV8 DYNAMIC_ARCH=1
或者
make TARGET=ARMV8SVE DYNAMIC_ARCH=1
这种构建方式可以确保生成的库文件能够在Grace处理器上高效运行,同时保持对其他ARMv8架构处理器的兼容性。
技术细节
-
DYNAMIC_ARCH模式:这种构建模式会包含多个CPU架构的优化代码,运行时自动检测并选择最适合当前处理器的实现。
-
NeoverseV2支持:虽然不能直接作为独立构建目标,但在动态架构模式下,OpenBLAS已经包含了针对NeoverseV2的优化内核。
-
编译器选项:构建系统会自动处理适当的编译器标志,如-march和-mtune参数,无需手动指定。
结论
在NVIDIA Grace平台上构建OpenBLAS时,开发者应避免直接指定NeoverseV2作为目标架构,而是采用更通用的ARMv8架构配合DYNAMIC_ARCH选项。这种方法既保证了兼容性,又能充分利用Grace处理器的性能特性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00