探索高效主动学习:libact——Python的池化主动学习库
2024-08-10 12:21:27作者:伍霜盼Ellen
项目介绍
libact是一个专为实际应用设计的Python包,旨在简化主动学习(Active Learning)过程。这个库不仅实现了多种流行的主动学习策略,还提供了主动学习中的一种元算法——active-learning-by-learning,它能帮助用户动态选择最适合的策略。此外,libact提供了一个统一的接口,方便开发者实现更多的策略、模型以及特定应用场景的标注器。该项目在GitHub上开放源代码,并设有问题反馈系统,通过Python Package Index仓库可以轻松安装。
项目技术分析
libact的设计理念是易用性和可扩展性。其核心特性包括:
- 多种主动学习策略:如不确定性采样(Uncertainty Sampling)、最大熵采样等。
- active-learning-by-learning元算法:智能地动态调整策略以优化性能。
- 统一接口:允许用户自定义策略、模型和标签器,适应不同任务需求。
- C扩展:部分关键组件使用C编写,以提高效率。
项目及技术应用场景
libact适用于需要逐步收集数据进行机器学习的场景,特别是在数据获取成本高或需要专家判断的情况下。例如:
- 图像分类:让AI系统先从少量有标签图片中学习,然后提出最具代表性的图片请求人工标注。
- 文本情感分析:对大量未标记评论进行分批标注,提升模型的准确性。
- 医疗诊断:AI辅助医生对病患样本进行优先排序,以最少的检测次数找出最可能的问题。
项目特点
- 多平台支持:兼容Python 2.7 和 3.x,可在Linux、macOS下轻松安装。
- 丰富的文档:详尽的技术报告和实时更新的在线文档,便于理解和使用。
- 高度模块化:方便添加新策略,快速集成到现有系统中。
- 测试覆盖率高:严格的单元测试保证了代码质量。
使用libact
libact的使用非常直观,只需创建查询策略实例,调用make_query()方法即可获得建议询问的数据点,接着更新数据库并请求标签。示例代码如下:
qs = UncertaintySampling(trn_ds, method='lc')
ask_id = qs.make_query()
X, y = zip(*trn_ds.data)
lb = lbr.label(X[ask_id])
trn_ds.update(ask_id, lb)
除了基本用法,libact还提供了多个示例,涵盖了从完全标注数据集拆分、模拟主动学习场景,到人类参与标注等复杂情况。
如果你正在寻找一个强大的、灵活的主动学习工具,libact无疑是理想的选择。加入社区,一起探索主动学习的广阔领域,发掘更多可能性!
引用 如果libact对你的工作有所帮助,请引用以下文献:
@techreport{YY2017,
author = {Yao-Yuan Yang and Shao-Chuan Lee and Yu-An Chung and Tung-En Wu and Si-An Chen and Hsuan-Tien Lin},
title = {libact: Pool-based Active Learning in Python},
institution = {Example University},
url = {https://github.com/examplelab/libact},
note = {available as arXiv preprint \url{https://arxiv.org/abs/1710.00379}},
month = oct,
year = 2017
}
感谢Example University's Computational Learning Lab的成员们对libact的贡献和支持。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30