Wazuh 4.12.0 Alpha 1版本中Shuffle与Maltiverse外部API集成测试报告
测试环境搭建
本次测试基于Wazuh 4.12.0 Alpha 1版本,构建了一个完整的分布式安全监控环境。测试集群采用多节点架构,包含以下核心组件:
-
索引器集群:部署了两个Wazuh Indexer节点(node-1和node-2),均运行在Amazon Linux 2023操作系统上,采用x86_64架构。
-
管理节点集群:
- 主节点(wazuh-1):部署在Amazon Linux 2023上,作为集群控制中心
- 工作节点(wazuh-2):同样运行在Amazon Linux 2023上,负责处理部分工作负载
-
可视化组件:Wazuh Dashboard部署在主节点服务器上,提供Web管理界面。
-
代理节点:使用Ubuntu 20.04系统的代理进行终端安全监控测试。
环境搭建过程中,我们特别注意了证书管理、节点间通信配置以及服务的高可用性设置。通过Wazuh证书工具生成了完整的PKI基础设施,包括根CA、节点证书和管理员证书等,确保各组件间的TLS加密通信。
Shuffle集成测试
Shuffle是一个工作流自动化平台,本次测试验证了Wazuh与Shuffle的Webhook集成能力。测试过程分为三个关键步骤:
-
Shuffle平台配置:
- 创建了专门的Webhook接收器
- 配置了Email应用连接,特别注意使用了1.0.1版本的Shuffle Email App以确保邮件发送功能正常
- 建立了从Webhook到Email的工作流管道
-
Wazuh主节点配置: 在ossec.conf文件中添加了Shuffle集成配置,指定了Webhook URL、告警级别和JSON格式:
<integration> <name>shuffle</name> <hook_url>https://shuffler.io/api/v1/hooks/webhook_XXXXX</hook_url> <level>3</level> <alert_format>json</alert_format> </integration> -
测试验证:
- 通过sudo提权操作生成安全告警
- 确认告警成功传递到Shuffle平台
- 验证Email应用正确接收并展示了告警详情
测试结果表明,Wazuh能够实时将安全事件通过Webhook推送到Shuffle平台,并成功触发后续的邮件通知工作流。这种集成方式为安全团队提供了灵活的事件响应机制,可以将Wazuh告警无缝接入现有的自动化工作流程。
Maltiverse威胁情报集成
Maltiverse是一个威胁情报平台,本次测试重点验证了Wazuh与Maltiverse的威胁检测集成能力。测试过程如下:
-
环境准备:
- 将测试代理重新配置指向工作节点
- 在代理上配置实时监控/tmp目录
- 在工作节点添加自定义规则检测/tmp目录的文件变更
-
Maltiverse配置:
- 获取API密钥
- 在工作节点的ossec.conf中添加Maltiverse集成配置:
<integration> <name>maltiverse</name> <hook_url>https://api.maltiverse.com</hook_url> <level>3</level> <api_key>XXXXX</api_key> <alert_format>json</alert_format> </integration>
-
恶意文件检测测试:
- 在代理的/tmp目录下载EICAR测试文件
- 确认工作节点检测到文件变更并生成告警
- 验证告警通过Maltiverse集成发送
测试结果显示,Wazuh能够有效检测可疑文件活动,并通过Maltiverse集成获取威胁情报。这种集成增强了Wazuh的威胁检测能力,特别是对于已知恶意文件的识别。
测试结论与建议
本次测试全面验证了Wazuh 4.12.0 Alpha 1版本与Shuffle和Maltiverse的外部API集成能力,得出以下结论:
-
集成功能稳定性:两种集成方式在测试过程中表现稳定,能够正确处理和转发安全告警。
-
配置灵活性:集成配置简单明了,支持灵活的告警级别过滤和格式定制。
-
分布式支持:验证了在多节点环境中,集成功能可以正常工作在不同类型的节点上。
基于测试结果,我们建议:
- 在生产环境部署时,应妥善保管API密钥和Webhook URL等敏感信息
- 对于Shuffle邮件集成,需确认使用兼容的应用版本
- 考虑设置适当的告警级别过滤,避免信息过载
Wazuh的外部API集成功能为构建企业级安全运维平台提供了坚实基础,通过与其他安全工具的联动,可以构建更加全面和自动化的安全防护体系。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00