Wazuh 4.12.0 Alpha 1版本中Shuffle与Maltiverse外部API集成测试报告
测试环境搭建
本次测试基于Wazuh 4.12.0 Alpha 1版本,构建了一个完整的分布式安全监控环境。测试集群采用多节点架构,包含以下核心组件:
-
索引器集群:部署了两个Wazuh Indexer节点(node-1和node-2),均运行在Amazon Linux 2023操作系统上,采用x86_64架构。
-
管理节点集群:
- 主节点(wazuh-1):部署在Amazon Linux 2023上,作为集群控制中心
- 工作节点(wazuh-2):同样运行在Amazon Linux 2023上,负责处理部分工作负载
-
可视化组件:Wazuh Dashboard部署在主节点服务器上,提供Web管理界面。
-
代理节点:使用Ubuntu 20.04系统的代理进行终端安全监控测试。
环境搭建过程中,我们特别注意了证书管理、节点间通信配置以及服务的高可用性设置。通过Wazuh证书工具生成了完整的PKI基础设施,包括根CA、节点证书和管理员证书等,确保各组件间的TLS加密通信。
Shuffle集成测试
Shuffle是一个工作流自动化平台,本次测试验证了Wazuh与Shuffle的Webhook集成能力。测试过程分为三个关键步骤:
-
Shuffle平台配置:
- 创建了专门的Webhook接收器
- 配置了Email应用连接,特别注意使用了1.0.1版本的Shuffle Email App以确保邮件发送功能正常
- 建立了从Webhook到Email的工作流管道
-
Wazuh主节点配置: 在ossec.conf文件中添加了Shuffle集成配置,指定了Webhook URL、告警级别和JSON格式:
<integration> <name>shuffle</name> <hook_url>https://shuffler.io/api/v1/hooks/webhook_XXXXX</hook_url> <level>3</level> <alert_format>json</alert_format> </integration> -
测试验证:
- 通过sudo提权操作生成安全告警
- 确认告警成功传递到Shuffle平台
- 验证Email应用正确接收并展示了告警详情
测试结果表明,Wazuh能够实时将安全事件通过Webhook推送到Shuffle平台,并成功触发后续的邮件通知工作流。这种集成方式为安全团队提供了灵活的事件响应机制,可以将Wazuh告警无缝接入现有的自动化工作流程。
Maltiverse威胁情报集成
Maltiverse是一个威胁情报平台,本次测试重点验证了Wazuh与Maltiverse的威胁检测集成能力。测试过程如下:
-
环境准备:
- 将测试代理重新配置指向工作节点
- 在代理上配置实时监控/tmp目录
- 在工作节点添加自定义规则检测/tmp目录的文件变更
-
Maltiverse配置:
- 获取API密钥
- 在工作节点的ossec.conf中添加Maltiverse集成配置:
<integration> <name>maltiverse</name> <hook_url>https://api.maltiverse.com</hook_url> <level>3</level> <api_key>XXXXX</api_key> <alert_format>json</alert_format> </integration>
-
恶意文件检测测试:
- 在代理的/tmp目录下载EICAR测试文件
- 确认工作节点检测到文件变更并生成告警
- 验证告警通过Maltiverse集成发送
测试结果显示,Wazuh能够有效检测可疑文件活动,并通过Maltiverse集成获取威胁情报。这种集成增强了Wazuh的威胁检测能力,特别是对于已知恶意文件的识别。
测试结论与建议
本次测试全面验证了Wazuh 4.12.0 Alpha 1版本与Shuffle和Maltiverse的外部API集成能力,得出以下结论:
-
集成功能稳定性:两种集成方式在测试过程中表现稳定,能够正确处理和转发安全告警。
-
配置灵活性:集成配置简单明了,支持灵活的告警级别过滤和格式定制。
-
分布式支持:验证了在多节点环境中,集成功能可以正常工作在不同类型的节点上。
基于测试结果,我们建议:
- 在生产环境部署时,应妥善保管API密钥和Webhook URL等敏感信息
- 对于Shuffle邮件集成,需确认使用兼容的应用版本
- 考虑设置适当的告警级别过滤,避免信息过载
Wazuh的外部API集成功能为构建企业级安全运维平台提供了坚实基础,通过与其他安全工具的联动,可以构建更加全面和自动化的安全防护体系。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00