LLM项目0.20版本发布:新增模型与代码提取功能
LLM是一个命令行工具和Python库,用于与大型语言模型交互。它提供了简洁的接口,让开发者能够轻松地在终端或代码中调用各种语言模型的能力。最新发布的0.20版本带来了一系列重要更新,特别是新增了多个模型支持和一个实用的代码提取功能。
新增模型支持
本次更新引入了几个重要的新模型:
-
o1模型:这是一个全新的模型,目前还不支持流式输出功能。开发者可以期待它在未来版本中获得更多功能增强。
-
o1-preview和o1-mini模型流式支持:这两个预览版和小型模型现在支持流式输出,这意味着它们可以逐步返回生成结果,而不是等待完整响应,对于需要实时交互的应用场景特别有用。
-
音频处理模型:新增了gpt-4o-audio-preview和gpt-4o-mini-audio-preview两个专门用于音频处理的模型,扩展了LLM在多媒体领域的应用能力。
代码提取功能
0.20版本引入了一个非常实用的新功能:代码块提取。通过-x/--extract选项,用户可以直接获取响应中的第一个代码块内容。这个功能在以下场景中特别有用:
-
快速获取代码片段:当用户询问"Python函数来反转字符串"这样的问题时,可以直接得到可用的代码实现,而不需要手动从完整响应中提取。
-
模板保存:创建模板时也可以使用这个选项,将提取功能保存为模板的一部分。在YAML模板中,可以通过设置extract: true来启用此功能。
-
日志查询:llm logs命令现在也支持-x选项,可以从历史记录中直接提取代码块。
其他改进
-
模型搜索:新增了llm models -q 'search'功能,允许用户通过关键词搜索模型,提高了模型选择的效率。
-
默认模型显示:模型列表现在会明确标注当前默认模型,帮助用户更好地了解当前配置。
-
依赖问题修复:解决了某些依赖版本组合可能导致Client初始化错误的问题,提高了稳定性。
-
OpenAI嵌入模型:现在支持使用完整的模型名称引用OpenAI的嵌入模型,同时保持对旧名称的兼容性。
总结
LLM 0.20版本通过新增模型支持和代码提取功能,进一步提升了开发者的工作效率。特别是代码提取功能,解决了从模型响应中手动提取代码片段的痛点,使得LLM在编程辅助方面的实用性大大增强。音频处理模型的加入也扩展了LLM的应用场景,为多媒体处理提供了新的可能性。这些改进使得LLM作为一个语言模型交互工具更加完善和易用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00