探索高精度SLAM的新里程:LIMO-Velo
LIMO-Velo是一个专为高速旋转LiDAR设计的实时LiDAR-Inertial同步定位与建图(SLAM)系统,特别适合在Formula Student Driverless赛事中使用的高速场景。其代码结构清晰易懂,即便是初学者也能快速上手。
项目简介
LIMO-Velo基于HKU-Mars团队的IKFoM和ikd-Tree库,并受到他们的FAST_LIO启发。这个项目能以高达20m/s的速度在直道上运行,100deg/s的速度在转弯处保持厘米级精度,是目前唯一能在实时环境下实现这一性能的算法。不仅如此,它还支持Velodyne、Hesai、Ouster和Livox等多款LiDAR设备。
技术剖析
LIMO-Velo的核心在于利用迭代卡尔曼滤波器(Iterated Kalman Filter on Manifolds, IKFoM)和增量KD树(Incremental KD-Tree, ikd-Tree),实现高效的数据处理。系统分为多个模块,包括数据采集、预处理、特征提取、滤波估计、状态更新和结果发布等。通过简单的参数配置,开发者可以根据自己的硬件环境进行定制。
应用场景
LIMO-Velo适用于自动驾驶赛事的精准定位与地图构建,尤其在高速行驶时,如Formula Student Driverless比赛中的直线加速和急弯。此外,也可以用于无人机导航、室内机器人定位以及需要实时高精度地图重建的任何场合。
项目特点
- 实时性:LIMO-Velo可在高速运动下保持厘米级精度的实时定位。
- 兼容性:支持多种主流LiDAR品牌,方便不同硬件平台的应用。
- 易理解:代码模块化,逻辑清晰,适合初学者学习和团队传承。
- 高精度:在实际测试中,LIMO-Velo在赛事速度下仍能保持极高的地图细节。
- 可扩展性:预留了添加GPS和其他传感器接口,便于进一步提升系统性能。
最新特性
- 高质量地图:新增参数可创建更精细的地图,更适合复杂环境的识别。
- 预先定位:正在开发的功能允许在已知高清地图上进行预先定位,即将正式发布。
使用体验
只需简单几步,即可运行LIMO-Velo。首先克隆仓库并编译代码,然后通过启动文件运行系统。你可以选择带有可视化界面的test.launch
或无界面的run.launch
。参数调整集中在config/params.yaml
文件,可按需自定义你的应用。
探索LIMO-Velo的世界,体验高速下的精准定位与建图,为你的无人驾驶项目开启新的可能。无论是学术研究还是商业应用,LIMO-Velo都将是你值得信赖的伙伴。立即加入我们,一起迈向未来!
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









