Google Cloud Go AI Platform 1.80.0版本发布:增强多模态数据集与推理引擎能力
Google Cloud Go AI Platform是Google Cloud提供的机器学习平台服务,它允许开发者在云端构建、训练和部署机器学习模型。最新发布的1.80.0版本带来了一系列重要更新,特别是在多模态数据集处理和推理引擎方面有了显著增强。
多模态数据集评估功能增强
新版本在多模态数据集RPCs中增加了批量预测评估功能。这一改进使得开发者能够更高效地对多模态数据集进行批量预测结果的评估。多模态数据通常包含文本、图像、音频等多种类型的数据,这种评估功能的增强对于处理复杂数据场景尤为重要。
批量预测评估可以帮助开发者:
- 快速验证模型在多模态数据上的表现
- 对比不同模型在多模态任务中的性能差异
- 识别模型在特定数据子集上的表现优劣
示例存储服务新增
1.80.0版本引入了example、example_store和example_store_service等原型定义。这些新增功能为机器学习工作流中的示例管理提供了更完善的支持:
- example原型定义了机器学习示例的基本结构
- example_store提供了存储和管理示例的机制
- example_store_service则提供了与示例存储交互的服务接口
这些新增功能特别适用于需要管理和重用大量训练示例的场景,如推荐系统、自然语言处理等应用。
会话管理功能引入
新版本增加了session.proto和session_service.proto,为AI平台引入了会话管理能力。会话管理在交互式AI应用中尤为重要,它能够:
- 维护用户与AI系统之间的持续对话状态
- 跟踪上下文信息以实现更连贯的交互
- 支持多轮对话场景下的模型推理
这一功能特别适合聊天机器人、虚拟助手等需要保持对话上下文的AI应用。
Vertex AI搜索引擎支持
1.80.0版本增加了对Vertex AI搜索引擎的支持。Vertex AI搜索是Google Cloud提供的企业级搜索解决方案,能够:
- 处理结构化和非结构化数据
- 提供语义搜索能力
- 支持复杂的搜索场景和个性化结果
这一集成使得开发者能够更轻松地在AI应用中实现高级搜索功能。
推理引擎强制删除功能
新版本在推理引擎(ReasoningEngine)中启用了强制删除功能。这一改进解决了在资源清理时可能遇到的依赖问题,使得:
- 系统管理员能够更灵活地管理推理引擎资源
- 避免因资源依赖导致的删除失败
- 简化了资源生命周期管理流程
强制删除功能特别适合需要频繁创建和删除推理引擎实例的开发和生产环境。
总结
Google Cloud Go AI Platform 1.80.0版本的发布,在多模态数据处理、示例管理、会话支持和推理引擎管理等方面都带来了重要改进。这些增强功能使得开发者能够更高效地构建和管理复杂的AI应用,特别是在处理多模态数据和实现交互式AI体验方面提供了更强大的支持。对于正在使用或考虑使用Google Cloud AI服务的开发者来说,这一版本值得关注和升级。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00