解决multiplatform-settings在WASM平台下的Storage类访问问题
背景介绍
multiplatform-settings是一个优秀的Kotlin跨平台配置存储库,它允许开发者在Android、iOS、JVM和Web等多个平台上使用统一的API来管理应用配置。然而,在最新的Kotlin/WASM支持中,开发者可能会遇到一个特定问题:无法访问org.w3c.dom.Storage类。
问题现象
当开发者在WASM平台(wasmJsMain)下使用multiplatform-settings库时,可能会遇到编译错误,提示"Cannot access class 'org.w3c.dom.Storage'"。这个问题通常出现在尝试使用StorageSettings实现时。
问题根源
这个问题源于Kotlin 2.1.0-Beta2版本中对WASM标准库的调整。在此版本中,相关API被从标准库中移除,导致依赖这些API的代码无法编译通过。具体来说,Storage接口是Web Storage API的一部分,原本包含在Kotlin的标准库中,但在新版本中被移出。
解决方案
要解决这个问题,开发者需要显式添加kotlinx-browser依赖项。这个库包含了Web平台所需的各种DOM相关API,包括Storage接口。
对于使用multiplatform-settings 1.3.0及以上版本的项目,库本身已经包含了必要的依赖。但如果开发者仍然遇到问题,可以手动添加依赖:
// 在build.gradle.kts中
sourceSets {
val wasmJsMain by getting {
dependencies {
implementation("org.jetbrains.kotlinx:kotlinx-browser:0.9.0")
}
}
}
最佳实践
-
版本兼容性检查:确保使用的multiplatform-settings版本至少为1.3.0,这个版本已经解决了WASM平台的兼容性问题。
-
多平台配置:在共享模块中正确配置各平台的依赖关系,特别是wasmJsMain目标平台。
-
构建缓存清理:在添加新依赖后,建议清理构建缓存以确保所有更改生效。
技术原理
WASM平台下的本地存储访问依赖于浏览器的Web Storage API。在Kotlin/WASM中,这些API通过kotlinx-browser库提供。当标准库中的相关API被移除后,显式添加这个依赖就成为了必要步骤。
multiplatform-settings库在WASM平台下的StorageSettings实现正是基于这些API,因此需要确保运行时环境能够访问到org.w3c.dom.Storage接口及其实现。
总结
跨平台开发中,平台特定的依赖管理是一个常见挑战。multiplatform-settings库通过持续更新来适应各平台的变化,但开发者也需要了解这些底层机制。遇到类似问题时,检查平台特定依赖和库版本是首要的解决步骤。随着Kotlin多平台生态的成熟,这类问题将逐渐减少,但掌握基本的排查方法仍然是每个跨平台开发者的必备技能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00