使用Keras进行句子分类的卷积神经网络项目教程
2024-09-19 09:53:42作者:明树来
项目介绍
本项目基于Keras框架,实现了一个用于句子分类的卷积神经网络(CNN)模型。该项目灵感来源于Yoon Kim的论文《Convolutional Neural Networks for Sentence Classification》,并在IMDB语料库上进行了训练和测试。通过本项目,用户可以快速构建和训练一个用于情感分析的CNN模型,适用于各种自然语言处理任务。
项目快速启动
环境准备
- 安装Python 3.x
- 安装Keras和TensorFlow或Theano后端
pip install keras tensorflow
克隆项目
git clone https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras.git
cd CNN-for-Sentence-Classification-in-Keras
运行项目
- 下载IMDB数据集(如果需要)
- 运行训练脚本
python sentiment_cnn.py
代码示例
以下是项目中sentiment_cnn.py文件的核心代码片段:
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Input, MaxPooling1D, Convolution1D, Embedding
from keras.layers.merge import Concatenate
from keras.datasets import imdb
from keras.preprocessing import sequence
# 加载数据
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_words)
x_train = sequence.pad_sequences(x_train, maxlen=sequence_length)
x_test = sequence.pad_sequences(x_test, maxlen=sequence_length)
# 构建模型
model_input = Input(shape=(sequence_length,))
z = Embedding(len(vocabulary_inv), embedding_dim, input_length=sequence_length)(model_input)
z = Dropout(dropout_prob[0])(z)
conv_blocks = []
for sz in filter_sizes:
conv = Convolution1D(filters=num_filters, kernel_size=sz, padding="valid", activation="relu", strides=1)(z)
conv = MaxPooling1D(pool_size=2)(conv)
conv = Flatten()(conv)
conv_blocks.append(conv)
z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]
z = Dropout(dropout_prob[1])(z)
z = Dense(hidden_dims, activation="relu")(z)
model_output = Dense(1, activation="sigmoid")(z)
model = Model(model_input, model_output)
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
# 训练模型
model.fit(x_train, y_train, batch_size=batch_size, epochs=num_epochs, validation_data=(x_test, y_test), verbose=2)
应用案例和最佳实践
应用案例
- 情感分析:本项目最初设计用于情感分析,可以用于电影评论、产品评价等文本的情感分类。
- 垃圾邮件检测:通过训练模型识别垃圾邮件,提高邮件过滤的准确性。
- 新闻分类:将新闻文章分类到不同的主题类别中,如体育、科技、财经等。
最佳实践
- 数据预处理:确保输入数据的格式正确,特别是文本数据的序列化和填充。
- 超参数调优:通过调整卷积核大小、过滤器数量、Dropout率等超参数,优化模型性能。
- 模型评估:使用交叉验证和不同的评估指标(如准确率、F1分数)来评估模型的泛化能力。
典型生态项目
- Keras官方文档:https://keras.io/
- TensorFlow:https://www.tensorflow.org/
- IMDB数据集:https://www.imdb.com/interfaces/
- Gensim:用于词向量训练的工具包,https://radimrehurek.com/gensim/
通过这些生态项目,用户可以进一步扩展和优化本项目的功能和性能。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
249
2.48 K
deepin linux kernel
C
24
6
Ascend Extension for PyTorch
Python
90
119
暂无简介
Dart
548
119
React Native鸿蒙化仓库
JavaScript
217
298
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
600
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
126
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
411
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
356
1.75 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
153
204