使用Keras进行句子分类的卷积神经网络项目教程
2024-09-19 16:05:20作者:明树来
项目介绍
本项目基于Keras框架,实现了一个用于句子分类的卷积神经网络(CNN)模型。该项目灵感来源于Yoon Kim的论文《Convolutional Neural Networks for Sentence Classification》,并在IMDB语料库上进行了训练和测试。通过本项目,用户可以快速构建和训练一个用于情感分析的CNN模型,适用于各种自然语言处理任务。
项目快速启动
环境准备
- 安装Python 3.x
- 安装Keras和TensorFlow或Theano后端
pip install keras tensorflow
克隆项目
git clone https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras.git
cd CNN-for-Sentence-Classification-in-Keras
运行项目
- 下载IMDB数据集(如果需要)
- 运行训练脚本
python sentiment_cnn.py
代码示例
以下是项目中sentiment_cnn.py文件的核心代码片段:
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Input, MaxPooling1D, Convolution1D, Embedding
from keras.layers.merge import Concatenate
from keras.datasets import imdb
from keras.preprocessing import sequence
# 加载数据
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_words)
x_train = sequence.pad_sequences(x_train, maxlen=sequence_length)
x_test = sequence.pad_sequences(x_test, maxlen=sequence_length)
# 构建模型
model_input = Input(shape=(sequence_length,))
z = Embedding(len(vocabulary_inv), embedding_dim, input_length=sequence_length)(model_input)
z = Dropout(dropout_prob[0])(z)
conv_blocks = []
for sz in filter_sizes:
conv = Convolution1D(filters=num_filters, kernel_size=sz, padding="valid", activation="relu", strides=1)(z)
conv = MaxPooling1D(pool_size=2)(conv)
conv = Flatten()(conv)
conv_blocks.append(conv)
z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0]
z = Dropout(dropout_prob[1])(z)
z = Dense(hidden_dims, activation="relu")(z)
model_output = Dense(1, activation="sigmoid")(z)
model = Model(model_input, model_output)
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
# 训练模型
model.fit(x_train, y_train, batch_size=batch_size, epochs=num_epochs, validation_data=(x_test, y_test), verbose=2)
应用案例和最佳实践
应用案例
- 情感分析:本项目最初设计用于情感分析,可以用于电影评论、产品评价等文本的情感分类。
- 垃圾邮件检测:通过训练模型识别垃圾邮件,提高邮件过滤的准确性。
- 新闻分类:将新闻文章分类到不同的主题类别中,如体育、科技、财经等。
最佳实践
- 数据预处理:确保输入数据的格式正确,特别是文本数据的序列化和填充。
- 超参数调优:通过调整卷积核大小、过滤器数量、Dropout率等超参数,优化模型性能。
- 模型评估:使用交叉验证和不同的评估指标(如准确率、F1分数)来评估模型的泛化能力。
典型生态项目
- Keras官方文档:https://keras.io/
- TensorFlow:https://www.tensorflow.org/
- IMDB数据集:https://www.imdb.com/interfaces/
- Gensim:用于词向量训练的工具包,https://radimrehurek.com/gensim/
通过这些生态项目,用户可以进一步扩展和优化本项目的功能和性能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30