image-js 开源项目教程
2024-09-13 18:27:36作者:滕妙奇
1. 项目介绍
image-js 是一个用于处理图像的 JavaScript 库,适用于浏览器和 Node.js 环境。它提供了丰富的图像处理功能,包括但不限于图像的加载、转换、滤镜应用、形态学操作、区域分析等。image-js 设计用于处理科学图像(8 或 16 位深度),能够打开和处理 JPEG、PNG 和未压缩的 TIFF 图像。
2. 项目快速启动
安装
首先,你需要在你的项目中安装 image-js。你可以使用 npm 或 yarn 进行安装:
npm install image-js
或者
yarn add image-js
基本使用
以下是一个简单的示例,展示如何加载图像并将其转换为灰度图像:
const { Image } = require('image-js');
// 加载图像
Image.load('path/to/your/image.jpg').then((image) => {
// 将图像转换为灰度图像
let greyImage = image.grey();
// 保存灰度图像
greyImage.save('path/to/save/grey-image.jpg');
});
图像处理示例
以下是一个更复杂的示例,展示如何应用高斯滤镜并保存处理后的图像:
const { Image } = require('image-js');
// 加载图像
Image.load('path/to/your/image.jpg').then((image) => {
// 应用高斯滤镜
let filteredImage = image.gaussianFilter({ radius: 2 });
// 保存处理后的图像
filteredImage.save('path/to/save/filtered-image.jpg');
});
3. 应用案例和最佳实践
案例1:图像分割
在图像处理中,图像分割是一个常见的需求。image-js 提供了多种方法来实现图像分割,例如使用阈值分割:
const { Image } = require('image-js');
// 加载图像
Image.load('path/to/your/image.jpg').then((image) => {
// 将图像转换为灰度图像
let greyImage = image.grey();
// 应用阈值分割
let mask = greyImage.mask({ threshold: 0.5 });
// 保存分割后的图像
mask.save('path/to/save/segmented-image.jpg');
});
案例2:形态学操作
形态学操作在图像处理中常用于去除噪声或提取图像的特定结构。以下是一个使用形态学开运算的示例:
const { Image } = require('image-js');
// 加载图像
Image.load('path/to/your/image.jpg').then((image) => {
// 应用形态学开运算
let openedImage = image.open();
// 保存处理后的图像
openedImage.save('path/to/save/opened-image.jpg');
});
4. 典型生态项目
1. OpenCV.js
OpenCV.js 是一个基于 OpenCV 的 JavaScript 库,提供了丰富的计算机视觉功能。image-js 可以与 OpenCV.js 结合使用,以实现更复杂的图像处理任务。
2. TensorFlow.js
TensorFlow.js 是一个用于机器学习的 JavaScript 库。image-js 可以用于预处理图像数据,以便在 TensorFlow.js 中进行训练和推理。
3. Three.js
Three.js 是一个用于创建 3D 图形的 JavaScript 库。image-js 可以用于处理和优化纹理图像,以提高 Three.js 应用程序的性能。
通过结合这些生态项目,image-js 可以扩展其功能,满足更广泛的图像处理需求。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
199
219
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.74 K