Liger-Kernel项目在Qwen2.5-7B模型训练中的梯度计算问题分析
问题背景
在使用Liger-Kernel项目对Qwen2.5-7B模型进行分布式训练时,研究人员发现了一个与梯度计算相关的技术问题。该问题在使用DeepSpeed Zero3训练模式下特别明显,但在较小规模的Qwen2.5-1.5B和3B模型上却不会出现。
问题现象
当使用DeepSpeed Zero3模式训练Qwen2.5-7B模型时,系统会在反向传播阶段报错。错误信息显示存在张量维度不匹配的问题,具体表现为一个维度为0的张量与另一个维度为3584的张量在非单一维度1上无法匹配。
根本原因分析
经过初步诊断,问题根源在于LigerFusedLinearCrossEntropyLoss的实现。当研究人员在apply_liger_kernel_to_qwen2函数中关闭fused_linear_cross_entropy选项并启用常规cross_entropy时,训练过程能够正常进行。
这表明问题很可能出在fused_linear_cross_entropy内部的logits梯度计算环节。这种融合实现的优化可能在处理大型模型时出现了边界条件未考虑周全的情况。
技术细节
-
张量维度问题:错误信息中提到的3584维度与Qwen2.5-7B模型的某些内部维度相关,而出现的0维度则表明在某些情况下梯度计算可能产生了空张量。
-
版本依赖性:有用户报告显示,该问题在DeepSpeed 0.16.4版本中不会出现,但在0.16.5版本中会重现,这表明问题可能与DeepSpeed的特定版本更新有关。
-
模型规模敏感性:问题仅出现在7B参数规模的模型上,而较小规模的1.5B和3B模型不受影响,这暗示问题可能与模型规模相关的内存管理或并行计算策略有关。
解决方案与建议
-
临时解决方案:
- 在apply_liger_kernel_to_qwen2函数中设置fused_linear_cross_entropy=False
- 使用常规的cross_entropy实现代替融合版本
- 考虑降级DeepSpeed到0.16.4版本
-
长期解决方案:
- 需要深入分析LigerFusedLinearCrossEntropyLoss在大型模型下的梯度计算逻辑
- 检查在DeepSpeed Zero3模式下梯度计算的特殊处理流程
- 考虑添加对大模型特殊情况的处理逻辑
技术启示
这个问题揭示了深度学习框架在优化实现时需要考虑的几个重要方面:
- 优化算法在不同规模模型上的行为可能差异很大,需要全面的测试覆盖
- 框架间的交互(如Liger-Kernel与DeepSpeed)可能产生意料之外的边界条件
- 融合操作虽然能提高性能,但也增加了调试难度,需要更完善的错误检测机制
对于使用大型语言模型的研究人员和工程师,这个案例提醒我们在采用性能优化技术时需要谨慎验证其正确性,特别是在模型规模和训练配置发生变化时。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









