Liger-Kernel项目在Qwen2.5-7B模型训练中的梯度计算问题分析
问题背景
在使用Liger-Kernel项目对Qwen2.5-7B模型进行分布式训练时,研究人员发现了一个与梯度计算相关的技术问题。该问题在使用DeepSpeed Zero3训练模式下特别明显,但在较小规模的Qwen2.5-1.5B和3B模型上却不会出现。
问题现象
当使用DeepSpeed Zero3模式训练Qwen2.5-7B模型时,系统会在反向传播阶段报错。错误信息显示存在张量维度不匹配的问题,具体表现为一个维度为0的张量与另一个维度为3584的张量在非单一维度1上无法匹配。
根本原因分析
经过初步诊断,问题根源在于LigerFusedLinearCrossEntropyLoss的实现。当研究人员在apply_liger_kernel_to_qwen2函数中关闭fused_linear_cross_entropy选项并启用常规cross_entropy时,训练过程能够正常进行。
这表明问题很可能出在fused_linear_cross_entropy内部的logits梯度计算环节。这种融合实现的优化可能在处理大型模型时出现了边界条件未考虑周全的情况。
技术细节
-
张量维度问题:错误信息中提到的3584维度与Qwen2.5-7B模型的某些内部维度相关,而出现的0维度则表明在某些情况下梯度计算可能产生了空张量。
-
版本依赖性:有用户报告显示,该问题在DeepSpeed 0.16.4版本中不会出现,但在0.16.5版本中会重现,这表明问题可能与DeepSpeed的特定版本更新有关。
-
模型规模敏感性:问题仅出现在7B参数规模的模型上,而较小规模的1.5B和3B模型不受影响,这暗示问题可能与模型规模相关的内存管理或并行计算策略有关。
解决方案与建议
-
临时解决方案:
- 在apply_liger_kernel_to_qwen2函数中设置fused_linear_cross_entropy=False
- 使用常规的cross_entropy实现代替融合版本
- 考虑降级DeepSpeed到0.16.4版本
-
长期解决方案:
- 需要深入分析LigerFusedLinearCrossEntropyLoss在大型模型下的梯度计算逻辑
- 检查在DeepSpeed Zero3模式下梯度计算的特殊处理流程
- 考虑添加对大模型特殊情况的处理逻辑
技术启示
这个问题揭示了深度学习框架在优化实现时需要考虑的几个重要方面:
- 优化算法在不同规模模型上的行为可能差异很大,需要全面的测试覆盖
- 框架间的交互(如Liger-Kernel与DeepSpeed)可能产生意料之外的边界条件
- 融合操作虽然能提高性能,但也增加了调试难度,需要更完善的错误检测机制
对于使用大型语言模型的研究人员和工程师,这个案例提醒我们在采用性能优化技术时需要谨慎验证其正确性,特别是在模型规模和训练配置发生变化时。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00