Ragas评估工具中多参考答案支持的技术探讨
2025-05-26 16:32:03作者:齐冠琰
Ragas作为一款专注于评估RAG(检索增强生成)系统性能的开源工具,近期在版本迭代中移除了对多参考答案(multiple ground truth answers)的支持。这一变更引发了开发者社区的关注,值得我们深入分析其技术背景和潜在解决方案。
多参考答案场景的技术价值
在实际问答系统评估中,单个问题存在多个正确答案的情况十分常见。例如:
- 同一问题可能有不同表述方式的正确答案
- 开放性问题往往存在多个合理的回答角度
- 基于不同文档片段可能推导出不同的正确结论
传统评估方法通常要求将多个参考答案拆分为独立数据行进行评估,这种方法虽然可行,但存在两个明显缺陷:
- 增加了数据预处理复杂度
- 难以保持问题-答案对的上下文关联性
Ragas的技术实现考量
Ragas团队在v0.1.7版本中移除了ground_truths参数,主要基于以下技术考虑:
- 简化API设计,降低使用门槛
- 统一评估接口的数据类型要求(强制使用字符串而非字符串序列)
- 减少评估过程中的潜在歧义
然而,这种简化确实牺牲了对复杂评估场景的支持能力。从技术架构角度看,理想的解决方案应该既能保持API简洁性,又能支持多参考答案评估。
可行的技术解决方案
对于需要多参考答案评估的场景,开发者可以考虑以下技术方案:
- 数据预处理方案
# 原始数据结构
question = "气候变化的主要原因?"
ground_truths = [
"人类活动导致的温室气体排放",
"工业化进程中的化石燃料燃烧"
]
# 转换为Ragas兼容格式
df = pd.DataFrame([
{"question": question, "ground_truth": gt}
for gt in ground_truths
])
- 评估后聚合方案
- 对每个参考答案单独评估
- 采用最大值/平均值等聚合策略计算最终得分
- 自定义评估指标
from ragas.metrics import answer_correctness
def multi_ref_evaluate(row):
scores = [
answer_correctness.score(
{"answer": row["answer"], "ground_truth": gt}
) for gt in row["ground_truths"]
]
return max(scores) # 或使用其他聚合策略
未来改进方向
从技术演进角度看,Ragas可以考虑:
- 引入多参考答案的标准化处理流程
- 提供内置的得分聚合策略
- 支持参考答案的权重设置
- 开发专门处理多参考答案场景的评估指标
这些改进可以在保持API简洁性的同时,更好地支持复杂评估需求。对于当前版本,开发者可以通过数据预处理或自定义评估函数的方式实现类似功能。
结语
评估工具的设计需要在简洁性和灵活性之间取得平衡。Ragas当前的API设计更倾向于前者,而开发者社区的需求则显示出对后者的期待。理解这一技术权衡,有助于开发者根据实际场景选择最适合的评估方案。随着RAG技术的不断发展,评估工具的演进值得持续关注。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
661