Ragas评估工具中多参考答案支持的技术探讨
2025-05-26 13:57:11作者:齐冠琰
Ragas作为一款专注于评估RAG(检索增强生成)系统性能的开源工具,近期在版本迭代中移除了对多参考答案(multiple ground truth answers)的支持。这一变更引发了开发者社区的关注,值得我们深入分析其技术背景和潜在解决方案。
多参考答案场景的技术价值
在实际问答系统评估中,单个问题存在多个正确答案的情况十分常见。例如:
- 同一问题可能有不同表述方式的正确答案
- 开放性问题往往存在多个合理的回答角度
- 基于不同文档片段可能推导出不同的正确结论
传统评估方法通常要求将多个参考答案拆分为独立数据行进行评估,这种方法虽然可行,但存在两个明显缺陷:
- 增加了数据预处理复杂度
- 难以保持问题-答案对的上下文关联性
Ragas的技术实现考量
Ragas团队在v0.1.7版本中移除了ground_truths
参数,主要基于以下技术考虑:
- 简化API设计,降低使用门槛
- 统一评估接口的数据类型要求(强制使用字符串而非字符串序列)
- 减少评估过程中的潜在歧义
然而,这种简化确实牺牲了对复杂评估场景的支持能力。从技术架构角度看,理想的解决方案应该既能保持API简洁性,又能支持多参考答案评估。
可行的技术解决方案
对于需要多参考答案评估的场景,开发者可以考虑以下技术方案:
- 数据预处理方案
# 原始数据结构
question = "气候变化的主要原因?"
ground_truths = [
"人类活动导致的温室气体排放",
"工业化进程中的化石燃料燃烧"
]
# 转换为Ragas兼容格式
df = pd.DataFrame([
{"question": question, "ground_truth": gt}
for gt in ground_truths
])
- 评估后聚合方案
- 对每个参考答案单独评估
- 采用最大值/平均值等聚合策略计算最终得分
- 自定义评估指标
from ragas.metrics import answer_correctness
def multi_ref_evaluate(row):
scores = [
answer_correctness.score(
{"answer": row["answer"], "ground_truth": gt}
) for gt in row["ground_truths"]
]
return max(scores) # 或使用其他聚合策略
未来改进方向
从技术演进角度看,Ragas可以考虑:
- 引入多参考答案的标准化处理流程
- 提供内置的得分聚合策略
- 支持参考答案的权重设置
- 开发专门处理多参考答案场景的评估指标
这些改进可以在保持API简洁性的同时,更好地支持复杂评估需求。对于当前版本,开发者可以通过数据预处理或自定义评估函数的方式实现类似功能。
结语
评估工具的设计需要在简洁性和灵活性之间取得平衡。Ragas当前的API设计更倾向于前者,而开发者社区的需求则显示出对后者的期待。理解这一技术权衡,有助于开发者根据实际场景选择最适合的评估方案。随着RAG技术的不断发展,评估工具的演进值得持续关注。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
227
2.28 K

暂无简介
Dart
527
116

React Native鸿蒙化仓库
JavaScript
214
288

Ascend Extension for PyTorch
Python
69
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197