Open Canvas项目在Docker Compose环境下的部署实践
2025-06-13 17:37:05作者:齐添朝
前言
Open Canvas是一个基于LangChain生态的AI应用开发框架,它提供了丰富的功能模块和API接口。在实际生产环境中,我们通常需要将其部署到容器化环境中运行。本文将详细介绍如何通过Docker Compose完整部署Open Canvas项目。
核心组件分析
Open Canvas项目主要由以下几个核心组件构成:
- 前端服务:基于Next.js构建的Web界面
- LangGraph服务:提供AI能力支撑的后端服务
- 数据库服务:PostgreSQL作为主数据库
- 缓存服务:Redis作为缓存层
部署方案设计
基础Docker Compose配置
在docker-compose.yml文件中,我们需要定义四个主要服务:
services:
open-canvas:
build: .
env_file: .env
ports:
- "3000:3000"
depends_on:
- langgraph
- db
- redis
# 环境变量配置...
langgraph:
image: langchain/langgraphjs-api:20
# 服务配置...
db:
image: postgres:15
# 数据库配置...
redis:
image: redis:7
# Redis配置...
关键配置说明
- 环境变量传递:需要确保所有必要的API密钥和环境配置正确传递到容器中
- 服务依赖:前端服务依赖于LangGraph、数据库和Redis服务
- 端口映射:合理规划各服务的端口映射关系
常见问题解决方案
在部署过程中,开发者可能会遇到"ERROR IN PROXY 404 Not Found"错误,这通常是由于LangGraph服务配置不当导致的。以下是有效的解决方案:
优化LangGraph服务配置
建议使用专门的Dockerfile来构建LangGraph服务:
FROM langchain/langgraphjs-api:20
ADD . /deps/open-canvas
RUN cd /deps/open-canvas && yarn install --frozen-lockfile
ENV LANGSERVE_GRAPHS='{
"agent": "./src/agent/open-canvas/index.ts:graph",
"reflection": "./src/agent/reflection/index.ts:graph",
"thread_title": "./src/agent/thread-title/index.ts:graph"
}'
WORKDIR /deps/open-canvas
RUN (test ! -f /api/langgraph_api/js/build.mts && echo "Prebuild script not found, skipping") || tsx /api/langgraph_api/js/build.mts
数据库持久化配置
为确保数据安全,建议为PostgreSQL配置持久化存储:
volumes:
langgraph-data:
driver: local
services:
langgraph-postgres:
image: postgres:16
volumes:
- langgraph-data:/var/lib/postgresql/data
# 其他配置...
最佳实践建议
- 健康检查:为关键服务添加健康检查机制,确保依赖服务就绪后再启动应用
- 资源限制:为各容器设置合理的资源限制,避免资源争用
- 日志收集:配置统一的日志收集方案,便于问题排查
- 环境隔离:区分开发、测试和生产环境配置
总结
通过合理的Docker Compose配置,可以完整部署Open Canvas项目的所有组件。关键在于正确配置各服务间的依赖关系和通信机制,特别是LangGraph服务的特殊配置要求。本文提供的解决方案已经过实践验证,能够有效解决常见的404代理错误问题。开发者可以根据实际环境需求,灵活调整配置参数。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
470
3.48 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
718
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
212
85
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1