Open Canvas项目在Docker Compose环境下的部署实践
2025-06-13 19:45:50作者:齐添朝
前言
Open Canvas是一个基于LangChain生态的AI应用开发框架,它提供了丰富的功能模块和API接口。在实际生产环境中,我们通常需要将其部署到容器化环境中运行。本文将详细介绍如何通过Docker Compose完整部署Open Canvas项目。
核心组件分析
Open Canvas项目主要由以下几个核心组件构成:
- 前端服务:基于Next.js构建的Web界面
- LangGraph服务:提供AI能力支撑的后端服务
- 数据库服务:PostgreSQL作为主数据库
- 缓存服务:Redis作为缓存层
部署方案设计
基础Docker Compose配置
在docker-compose.yml文件中,我们需要定义四个主要服务:
services:
open-canvas:
build: .
env_file: .env
ports:
- "3000:3000"
depends_on:
- langgraph
- db
- redis
# 环境变量配置...
langgraph:
image: langchain/langgraphjs-api:20
# 服务配置...
db:
image: postgres:15
# 数据库配置...
redis:
image: redis:7
# Redis配置...
关键配置说明
- 环境变量传递:需要确保所有必要的API密钥和环境配置正确传递到容器中
- 服务依赖:前端服务依赖于LangGraph、数据库和Redis服务
- 端口映射:合理规划各服务的端口映射关系
常见问题解决方案
在部署过程中,开发者可能会遇到"ERROR IN PROXY 404 Not Found"错误,这通常是由于LangGraph服务配置不当导致的。以下是有效的解决方案:
优化LangGraph服务配置
建议使用专门的Dockerfile来构建LangGraph服务:
FROM langchain/langgraphjs-api:20
ADD . /deps/open-canvas
RUN cd /deps/open-canvas && yarn install --frozen-lockfile
ENV LANGSERVE_GRAPHS='{
"agent": "./src/agent/open-canvas/index.ts:graph",
"reflection": "./src/agent/reflection/index.ts:graph",
"thread_title": "./src/agent/thread-title/index.ts:graph"
}'
WORKDIR /deps/open-canvas
RUN (test ! -f /api/langgraph_api/js/build.mts && echo "Prebuild script not found, skipping") || tsx /api/langgraph_api/js/build.mts
数据库持久化配置
为确保数据安全,建议为PostgreSQL配置持久化存储:
volumes:
langgraph-data:
driver: local
services:
langgraph-postgres:
image: postgres:16
volumes:
- langgraph-data:/var/lib/postgresql/data
# 其他配置...
最佳实践建议
- 健康检查:为关键服务添加健康检查机制,确保依赖服务就绪后再启动应用
- 资源限制:为各容器设置合理的资源限制,避免资源争用
- 日志收集:配置统一的日志收集方案,便于问题排查
- 环境隔离:区分开发、测试和生产环境配置
总结
通过合理的Docker Compose配置,可以完整部署Open Canvas项目的所有组件。关键在于正确配置各服务间的依赖关系和通信机制,特别是LangGraph服务的特殊配置要求。本文提供的解决方案已经过实践验证,能够有效解决常见的404代理错误问题。开发者可以根据实际环境需求,灵活调整配置参数。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
25