Shortest项目:下一代AI驱动的端到端测试框架探索
2025-06-11 14:17:49作者:董斯意
概述
Shortest项目正在构建一个革命性的端到端测试框架,它通过AI技术彻底改变了传统测试模式。这个框架的核心目标是让测试代码更简洁、更智能,同时覆盖从浏览器交互到数据库变更、邮件验证等完整应用场景。
技术架构
Shortest采用了一种创新的"AI优先"设计理念,主要包含以下几个关键组件:
- 测试定义层:开发者编写人类可读的测试场景描述,框架会自动将其转化为可执行的测试用例
- AI执行引擎:基于计算机视觉和自然语言处理技术,理解并操作Web界面
- 全栈验证系统:同时监控数据库变更、邮件发送等后端行为
- 智能断言机制:不仅验证功能正确性,还能检查UI样式等传统测试难以覆盖的方面
核心创新点
1. 自然语言测试定义
Shortest允许开发者用接近自然语言的方式定义测试场景。例如,一个完整的用户注册和发票发送流程可以这样描述:
test("用户注册并发送发票", async (page) => {
await shortest.db.changed(`
SELECT * FROM users
AND created_at > NOW() - interval '5 minutes'
LIMIT 1
`);
await shortest.email_received({
to: 'client@example.com',
subject: '新发票',
contains: '$100.00'
});
});
这种语法大幅降低了测试代码的编写门槛,同时保持了足够的表达能力。
2. AI驱动的测试执行
框架内置了强大的AI能力,可以:
- 自动识别页面元素并执行操作
- 处理复杂的用户交互流程
- 适应UI变化,减少测试维护成本
- 生成合理的测试数据
3. 全栈验证能力
不同于传统测试框架,Shortest提供了完整的应用状态验证:
- 数据库验证:直接查询数据库确认数据变更
- 邮件验证:检查邮件内容和附件
- UI验证:包括视觉样式等传统测试难以覆盖的方面
- 第三方服务集成:支持OAuth等复杂流程的测试
实现方案
测试文件结构
Shortest采用模块化设计,建议每个功能模块或路由对应一个测试文件:
project/
├── src/
│ ├── components/
│ ├── pages/
│ └── ...
└── tests/
├── auth.shortest.ts
├── billing.shortest.ts
└── ...
核心API设计
框架提供了一套简洁的API:
- UI测试构建器:定义浏览器交互流程
- 数据库断言:验证数据变更
- 邮件验证:检查发送的邮件
- 生命周期钩子:测试前后的准备和清理
执行模式
Shortest支持多种执行环境:
- 本地开发:带可视化反馈的交互式测试
- CI/CD流水线:完全自动化的无头模式
- 调试模式:当测试失败时提供详细诊断信息
技术挑战与解决方案
在开发过程中,团队面临并解决了多个技术难题:
-
第三方服务测试:通过预定义的认证流程和令牌缓存机制,解决了OAuth等复杂流程的自动化测试问题
-
视觉验证:开发了基于计算机视觉的UI一致性检查算法,可以验证如"所有按钮都是圆角"这类传统测试无法覆盖的需求
-
测试稳定性:实现了智能等待和重试机制,处理网络延迟等不确定因素
-
测试数据管理:内置了数据生成和清理工具,确保测试隔离性
最佳实践
基于项目讨论,我们总结了使用Shortest的几点建议:
- 测试粒度:每个测试文件应聚焦一个业务场景
- 数据准备:充分利用种子数据和清理机制
- 断言设计:优先验证业务结果而非实现细节
- AI辅助:利用框架的智能生成能力快速创建测试骨架
未来方向
Shortest项目正在向以下几个方向发展:
- 更智能的测试生成:基于代码变更自动推测需要更新的测试
- 深度CI/CD集成:作为部署流程的质量关卡
- 多环境支持:扩展对移动端、桌面应用等场景的测试能力
- 性能测试:集成负载和压力测试能力
总结
Shortest代表了测试工具的新一代发展方向,通过AI技术大幅降低了端到端测试的编写和维护成本。其创新的自然语言接口和全栈验证能力,使得开发者可以更专注于业务逻辑而非测试实现细节。随着项目的持续演进,它有望成为现代Web开发中不可或缺的质量保障工具。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322