Apache Arrow DataFusion参数类型推断测试的优化实践
2025-06-14 02:03:22作者:裴麒琰
在Apache Arrow DataFusion项目中,参数类型推断是一个重要功能,它允许SQL查询中的参数(如$1)在运行时被替换为具体的值。然而,现有的测试代码存在大量重复,这给代码维护和测试覆盖率的评估带来了挑战。
现有测试的问题
当前测试实现存在以下主要问题:
- 每个测试用例都重复了创建逻辑计划、验证参数类型、替换参数值等相同流程
- 测试断言分散,难以一目了然地看到完整的测试场景
- 测试输出格式不一致,增加了维护成本
- 难以快速识别哪些边界情况尚未被覆盖
解决方案设计
我们设计了一个ParameterTest结构体来封装测试逻辑:
struct ParameterTest {
sql: &'static str, // 测试SQL语句
expected_types: Vec<(&'static str, Option<DataType>)>, // 预期参数类型
param_values: Vec<ScalarValue>, // 参数值
}
该结构体提供了run方法,封装了以下测试步骤:
- 解析SQL生成逻辑计划
- 验证参数类型推断结果
- 用提供的参数值替换查询中的参数
- 生成包含初始计划和最终计划的格式化输出
改进后的测试示例
改进后的测试用例更加简洁明了:
#[test]
fn test_infer_types_from_predicate() {
let test = ParameterTest {
sql: "SELECT id, age FROM person WHERE age = $1",
expected_types: vec![("$1", Some(DataType::Int32))],
param_values: vec![ScalarValue::Int32(Some(10))],
};
assert_snapshot!(test.run(), @r#"
** Initial Plan:
Projection: person.id, person.age
Filter: person.age = $1
TableScan: person
** Final Plan:
Projection: person.id, person.age
Filter: person.age = Int32(10)
TableScan: person
"#);
}
技术优势
- 一致性:所有测试遵循相同模式,便于理解和维护
- 可读性:测试意图更加清晰,减少了样板代码
- 可维护性:修改测试逻辑只需调整ParameterTest实现
- 可扩展性:易于添加新的验证点或测试维度
- 覆盖率可视化:可以轻松统计所有测试用例的参数类型组合
实现细节
在ParameterTest的实现中,我们特别注意了:
- 错误处理的统一性,确保测试失败时能提供有意义的错误信息
- 快照测试(insta)的集成,便于验证计划变更
- 类型系统的充分利用,减少运行时错误
- 测试输出的格式化,便于人工审查
总结
通过引入ParameterTest结构体,我们显著提升了DataFusion参数类型推断测试的可维护性和可读性。这种模式也可以推广到项目中的其他测试场景,如表达式测试、优化规则测试等,进一步提升整个项目的测试质量。
这种测试结构的改进不仅减少了代码重复,更重要的是建立了一套标准化的测试模式,使得新贡献者能够更快地理解和添加测试用例,从而促进项目的可持续发展。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementPersist and reuse KV Cache to speedup your LLM.Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
283
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
225
303
暂无简介
Dart
572
127
Ascend Extension for PyTorch
Python
109
139
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
602
171
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
仓颉编译器源码及 cjdb 调试工具。
C++
120
194
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205