YOLOv10与YOLOv8性能对比分析:实测结果与优化建议
引言
目标检测作为计算机视觉领域的核心任务之一,其模型性能一直备受关注。YOLO系列模型因其出色的实时性在工业界得到广泛应用。最新发布的YOLOv10引起了广泛讨论,特别是关于其与YOLOv8的性能对比。本文将通过详细测试数据,分析两者在实际应用中的表现差异。
测试环境与方法
所有测试均在Google Colab平台上进行,硬件配置为NVIDIA T4 GPU。测试采用官方提供的预训练模型,包括YOLOv10n/YOLOv10s和YOLOv8n/YOLOv8s。为确保结果可靠性,每个模型都进行了100次重复测试以消除首次运行时的初始化影响。
原始PyTorch模型测试结果
在直接使用PyTorch模型(.pt格式)进行测试时,观察到以下现象:
- YOLOv10n平均推理时间:11.0ms
- YOLOv8n平均推理时间:6.9ms
- YOLOv10s平均推理时间:13.9ms
- YOLOv8s平均推理时间:12.8ms
初步结果显示,YOLOv10在PyTorch格式下的推理速度确实略慢于YOLOv8,这与官方宣称的性能提升似乎存在矛盾。
ONNX格式模型测试结果
将模型转换为ONNX格式后,性能表现出现了显著变化:
- YOLOv10n平均处理时间:152.2ms
- YOLOv8n平均处理时间:158.6ms
- YOLOv10s平均处理时间:326.6ms
- YOLOv8s平均处理时间:370.8ms
在ONNX格式下,YOLOv10展现出明显的性能优势,特别是随着模型规模的增大,优势更加明显。
关键发现与分析
-
模型初始化开销:首次推理时,模型需要分配显存和初始化计算图,这会导致时间测量不准确。多次重复测试可消除这一影响。
-
后处理优化:YOLOv10在后处理阶段表现出更优的性能,这得益于其架构上的改进。
-
模型规模影响:随着模型参数量的增加,YOLOv10的性能优势逐渐显现,说明其架构改进在大模型上效果更显著。
-
运行环境差异:ONNX运行时与PyTorch原生运行时的性能表现存在差异,这提示我们在不同部署环境下需要进行针对性优化。
性能优化建议
-
生产环境部署:建议使用ONNX格式进行部署,特别是对于较大规模的模型,可以充分发挥YOLOv10的性能优势。
-
基准测试方法:进行性能对比时,应采用多次运行取平均值的方式,避免单次测试的偶然性。
-
硬件适配:不同硬件平台对模型架构的优化效果不同,建议在实际部署硬件上进行针对性测试。
-
模型选择:对于轻量级应用,YOLOv8可能仍是较好选择;而对于需要更高精度的大模型场景,YOLOv10更具优势。
结论
YOLOv10在ONNX格式下展现出优于YOLOv8的性能表现,特别是在较大模型上优势明显。这一结果验证了YOLOv10架构改进的有效性。开发者应根据实际应用场景和部署环境选择合适的模型格式和版本,以充分发挥其性能潜力。未来随着YOLOv10的持续优化,其性能优势有望在更多场景下得到体现。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00