YOLOv8-PyTorch 项目教程
2026-01-18 10:33:57作者:沈韬淼Beryl
1. 项目的目录结构及介绍
yolov8-pytorch/
├── configs/
│ ├── yolov8.yaml
│ └── ...
├── data/
│ ├── coco.yaml
│ └── ...
├── models/
│ ├── yolov8.py
│ └── ...
├── utils/
│ ├── datasets.py
│ ├── losses.py
│ └── ...
├── train.py
├── test.py
├── predict.py
├── README.md
└── requirements.txt
- configs/: 包含项目的配置文件,如
yolov8.yaml。 - data/: 包含数据集的配置文件,如
coco.yaml。 - models/: 包含模型的定义文件,如
yolov8.py。 - utils/: 包含各种实用工具和辅助函数,如
datasets.py和losses.py。 - train.py: 用于训练模型的启动文件。
- test.py: 用于测试模型的启动文件。
- predict.py: 用于预测的启动文件。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖文件。
2. 项目的启动文件介绍
train.py
train.py 是用于训练 YOLOv8 模型的启动文件。它包含了模型训练的主要逻辑,如数据加载、模型初始化、损失计算和优化器设置等。
# train.py 示例代码
import torch
from models.yolov8 import YOLOv8
from utils.datasets import create_dataloader
from utils.losses import YOLOv8Loss
def train():
# 加载配置文件
config = load_config('configs/yolov8.yaml')
# 创建数据加载器
dataloader = create_dataloader(config['data'])
# 初始化模型
model = YOLOv8(config['model'])
# 初始化损失函数
criterion = YOLOv8Loss(config['loss'])
# 初始化优化器
optimizer = torch.optim.SGD(model.parameters(), lr=config['optimizer']['lr'])
# 训练循环
for epoch in range(config['epochs']):
for images, targets in dataloader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
test.py
test.py 是用于测试 YOLOv8 模型的启动文件。它包含了模型测试的主要逻辑,如数据加载、模型评估和结果输出等。
# test.py 示例代码
import torch
from models.yolov8 import YOLOv8
from utils.datasets import create_dataloader
from utils.metrics import evaluate
def test():
# 加载配置文件
config = load_config('configs/yolov8.yaml')
# 创建数据加载器
dataloader = create_dataloader(config['data'])
# 初始化模型
model = YOLOv8(config['model'])
# 加载预训练权重
model.load_state_dict(torch.load(config['weights']))
# 测试循环
results = []
for images, targets in dataloader:
outputs = model(images)
results.append(evaluate(outputs, targets))
# 输出测试结果
print(f'Test results: {results}')
predict.py
predict.py 是用于预测的启动文件。它包含了模型预测的主要逻辑,如图像加载、模型推理和结果输出等。
# predict.py 示例代码
import torch
from models.yolov8 import YOLOv8
from PIL import Image
from utils.datasets import preprocess_image
def predict(image_path):
# 加载配置文件
config = load_config('configs/yolov8.yaml')
# 初始化模型
model = YOLOv8(config['model'])
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
479
3.57 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
暂无简介
Dart
731
176
React Native鸿蒙化仓库
JavaScript
289
341
Ascend Extension for PyTorch
Python
290
322
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
仓颉编程语言运行时与标准库。
Cangjie
149
885
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
452