EasyEdit项目中MEND方法多模态知识编辑的局限性分析
2025-07-03 02:10:22作者:蔡怀权
多模态知识编辑中的NAN问题
在使用EasyEdit项目中的MEND方法进行多模态知识编辑时,研究人员发现了一个值得关注的技术现象:当连续执行超过4次编辑操作后,模型会出现"NaN in logits"的错误提示。这一问题在BLIP2-OPT-VQA等视觉语言模型上表现尤为明显。
问题现象与背景
MEND(Modifying Existing Neural Networks with Disentangled Layers)是一种高效的模型编辑方法,它通过训练一个轻量级的编辑网络来修改基础模型的参数,而不需要重新训练整个大模型。在初始几次编辑中,该方法表现良好,编辑准确率可达76.5%,图像重述准确率为59.7%,显示出不错的单次编辑能力。
然而,当尝试进行连续多次编辑时,模型在logits计算过程中出现了数值不稳定的情况,导致NaN(Not a Number)错误。这一现象并非由FP16量化引起,而是在默认配置下就会发生。
技术原因分析
经过深入研究,我们发现这一现象揭示了MEND方法在连续编辑场景下的固有局限性:
- 参数累积效应:每次编辑都会对模型参数进行修改,多次编辑后参数变化可能超出稳定范围
- 误差传播:前次编辑引入的微小误差会在后续编辑中被放大
- 数值稳定性:连续的非线性变换可能导致梯度消失或爆炸
解决方案与改进方向
针对这一问题,研究社区已经提出了若干改进方案:
- MALMEN方法:专门针对MEND的连续编辑问题进行了优化,通过更精细的梯度控制来维持数值稳定性
- 编辑记忆机制:引入外部记忆单元来记录历史编辑,避免直接叠加参数修改
- 正则化技术:在编辑过程中加入适当的正则化约束,防止参数变化过大
实践建议
对于需要使用EasyEdit进行多模态知识编辑的研究人员和开发者,我们建议:
- 对于单次或少量编辑任务,可以继续使用MEND方法
- 对于需要连续编辑的场景,应考虑采用MALMEN等改进方法
- 在实施编辑前,对目标模型的参数范围进行充分分析
- 监控编辑过程中的梯度变化和参数更新幅度
多模态知识编辑是一个快速发展的研究领域,随着技术的进步,我们期待看到更多能够稳定支持连续编辑的方法出现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134