LACT项目在Fedora Atomic系统上的安装指南
背景介绍
LACT是一款开源的AMD显卡超频和控制工具,为Linux用户提供了对AMD显卡进行性能调优的便捷方式。对于使用Fedora Atomic系列发行版(如Silverblue、Kinoite、Bazzite等)的用户,由于这些系统采用不可变的文件系统设计,安装过程需要特殊处理。
Fedora Atomic系统特性
Fedora Atomic系列发行版采用了不可变操作系统设计理念,这意味着系统根文件系统在运行时是只读的。这种设计提高了系统稳定性和安全性,但也带来了软件安装方式的改变。用户需要通过Flatpak或工具箱(Toolbox)容器来安装和管理应用程序。
安装步骤详解
-
准备工作
首先确保系统已启用RPM Fusion仓库,这是许多第三方软件(包括LACT)的依赖来源。 -
创建工具箱环境
使用以下命令创建一个新的工具箱容器:toolbox create --container lact -
进入工具箱环境
创建完成后,进入该容器环境:toolbox enter --container lact -
安装必要依赖
在容器内执行以下命令安装基础开发工具:sudo dnf install @development-tools -
安装LACT依赖包
继续安装LACT运行所需的依赖项:sudo dnf install cmake gcc-c++ libdrm-devel systemd-devel -
构建安装LACT
按照标准流程从源代码构建和安装LACT:git clone https://github.com/ilya-zlobintsev/LACT.git cd LACT mkdir build && cd build cmake .. make sudo make install
注意事项
-
权限配置
安装完成后,需要将用户添加到video组以获得必要的硬件访问权限:sudo usermod -a -G video $USER -
系统服务管理
LACT安装后会注册为系统服务,在工具箱容器内可以使用systemctl命令管理:sudo systemctl enable --now lactd -
图形界面访问
由于工具箱环境与主机系统隔离,GUI应用可能需要额外配置才能正确显示。
替代方案
对于不想使用工具箱环境的用户,可以考虑以下替代方案:
-
Flatpak打包
将LACT打包为Flatpak应用,这是Fedora Atomic推荐的软件分发方式。 -
层叠安装
使用rpm-ostree工具进行层叠安装,但这会影响系统的不可变性。
总结
在Fedora Atomic系统上安装LACT虽然需要额外步骤,但通过工具箱容器技术,用户仍然可以享受到LACT提供的AMD显卡控制功能。这种方法既保持了Atomic系统的核心优势,又满足了用户对硬件控制的需求。随着Flatpak等技术的完善,未来这类应用的安装将变得更加简便。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00