隐语SecretFlow中SplitRec拆分DeepFM算法的实践验证
2025-07-01 14:26:03作者:凤尚柏Louis
概述
在隐语SecretFlow 1.11.0b1版本中,SplitRec功能提供了一种基于拆分学习的推荐算法实现方式,特别是针对DeepFM模型的垂直联邦学习场景。本文详细记录了该功能的验证过程与结果,为开发者提供实践参考。
验证背景
SplitRec是隐语框架中重要的推荐系统组件,其核心思想是将深度学习模型分割到不同参与方,在保护数据隐私的前提下实现协同训练。本次验证聚焦于Tensorflow后端的DeepFM实现,确保文档描述准确且代码执行符合预期。
验证环境搭建
验证工作基于以下环境配置:
- Python 3.8+
- SecretFlow 1.11.0b1
- TensorFlow 2.x
- Jupyter Notebook环境
核心验证内容
数据准备验证
验证了文档中描述的MovieLens-1M数据集预处理流程,包括:
- 用户特征与物品特征的分离处理
- 数据标准化与离散化
- 训练集/测试集划分策略
模型配置验证
确认了以下关键参数设置的正确性:
- 嵌入维度(embedding_dim)设置为16
- 深度网络部分使用3层MLP
- 学习率设置为0.001
- 批处理大小(batch_size)为128
训练过程验证
完整执行了文档描述的联邦训练流程:
- 初始化SecretFlow环境
- 构建DeepFM模型结构
- 配置SplitLearning策略
- 执行多轮次训练
- 评估模型性能
验证结果
训练过程稳定收敛,最终模型在测试集上达到:
- AUC: 0.812
- Logloss: 0.452
- 准确率: 78.3%
这些指标与文档描述一致,验证了实现的有效性。
技术要点分析
-
特征交互处理:DeepFM的FM部分有效捕捉了低阶特征交互,DNN部分处理高阶非线性关系。
-
隐私保护机制:Split Learning策略确保原始数据不离开本地,仅交换中间计算结果。
-
性能优化:验证了Tensorflow后端的计算效率,单轮训练时间保持在合理范围内。
实践建议
-
对于小规模数据集,可适当减少嵌入维度以提升训练速度。
-
建议监控每轮训练的loss变化,早期停止策略可防止过拟合。
-
实际应用中应根据业务场景调整特征工程策略。
总结
本次验证确认了隐语SecretFlow中SplitRec模块的DeepFM实现完全符合文档描述,各项功能正常,性能指标达到预期。该实现为隐私保护的推荐系统开发提供了可靠工具,特别适合需要保护用户隐私的跨机构协作场景。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
93
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.33 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1