开源项目 Rush Stack 教程
1. 项目介绍
Rush Stack 是一个由微软发起的开源项目,旨在为大型单体仓库(monorepo)开发提供可重用技术,特别适用于Web应用程序。这个项目汇集了社区合作伙伴的力量,他们共同解决在大规模项目中遇到的工具挑战。Rush Stack 战略是整合诸如 Node.js、TypeScript、ESLint、Prettier、Webpack 和 Jest 等流行工具,并填补这些工具之间空白,以实现高效开发流程。
核心组件包括:
- Rush: 可扩展的构建编排器,用于管理复杂且多变的项目结构。
- Heft: 一个可扩展的构建系统,能够与 Rush 配合,提供自定义构建逻辑。
- API Extractor: 协调库包的API审查,并生成d.ts聚合文件。
- API Documenter: 生成API文档网站。
此外,还有 ESLint 相关工具,如 bulk、config 和 patch,以及 packlets 等。
2. 项目快速启动
安装依赖
首先确保全局安装了 npm。然后通过以下命令安装 Rush:
npm install -g @microsoft/rush
克隆仓库
获取 rushstack 示例项目:
git clone https://github.com/microsoft/rushstack.git
安装包
进入项目目录并运行 Rush 来安装所有依赖:
cd rushstack
rush install
如果你没有配置 GitHub 邮箱,可以添加 --bypass-policy 选项跳过政策检查。
构建项目
现在可以重建整个项目仓库:
rush rebuild
或者,如果你想只构建特定的项目,例如 rush-core-library:
cd libraries\rush-core-library
rushx build
注意,在 Rush 库里尽量避免直接使用 npm install 命令,更多关于 Rush 的使用方法可以在其文档中查找。
3. 应用案例和最佳实践
在 rushstack-samples 子仓库中提供了多种应用场景示例,展示如何在不同项目设置下使用 Heft 与其他流行的 JavaScript 框架结合。你可以参考这些样例来学习最佳实践。
4. 典型生态项目
Rush Stack 下涵盖多个子项目,它们各自承担着不同的职责,比如:
- @rushstack/api-documenter:处理 API 文档的生成。
- @rushstack/api-extractor:协调 API 的审核和导出。
- @rushstack/heft:构建系统的底层框架。
- @rushstack/lockfile-explorer:锁定文件查看工具。
- @rushstack/rundown:用于管理和执行任务的工具。
- @rushstack/rush:核心的 monorepo 构建管理器。
此外,还有一些 ESLint 相关的包,比如 eslint-bulk, eslint-config, eslint-patch 和 eslint-plugin-packlets,用来增强 ESLint 在大型 TypeScript 项目中的功能。
通过这些项目和工具,开发者可以搭建一个强大、可扩展的 monorepo 工作流。具体的使用场景和配置可以根据实际需求进行选择和定制。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00