MMrotate项目在DOTA-1.0数据集上的推理与结果提交指南
2025-07-05 22:16:06作者:房伟宁
概述
MMrotate作为基于PyTorch的开源旋转目标检测框架,在遥感图像分析领域有着广泛应用。本文将详细介绍如何使用MMrotate 1.x版本对DOTA-1.0数据集进行模型推理,并生成符合要求的提交文件。
准备工作
在使用MMrotate进行DOTA-1.0数据集推理前,需要确保已完成以下准备工作:
- 已安装MMrotate 1.x版本及其依赖环境
- 已完成模型训练并保存了权重文件
- 已下载DOTA-1.0测试集数据并正确组织目录结构
配置修改要点
在MMrotate 1.x版本中,针对DOTA-1.0数据集的推理配置需要注意以下几个关键点:
- 测试数据加载器配置:需要正确设置测试集路径和预处理流程
- 评估器配置:必须启用format_only选项以生成提交文件
- 合并补丁设置:DOTA数据集通常采用分块处理,需要合并结果
具体实现步骤
1. 测试数据加载配置
测试数据加载器的配置应当包含以下核心参数:
- batch_size:建议设置为1
- num_workers:根据硬件配置调整
- shuffle:必须设置为False以保证结果顺序
- test_mode:必须设置为True
- 数据路径:确保指向测试集图像目录
2. 评估器配置
评估器需要特别配置以下参数:
- type:必须设置为'DOTAMetric'
- format_only:设置为True以生成提交文件
- merge_patches:设置为True以合并分块结果
- outfile_prefix:指定结果输出路径前缀
3. 执行推理
配置完成后,可以使用MMrotate提供的测试脚本进行推理。系统会自动处理以下流程:
- 加载测试图像
- 应用预处理流程
- 执行模型推理
- 后处理预测结果
- 生成符合DOTA评估要求的文本文件
结果文件说明
生成的提交文件将包含以下信息:
- 图像文件名
- 检测置信度
- 旋转边界框坐标(四点或五点表示法)
- 类别标签
这些文件可以直接提交至DOTA评估服务器进行性能评测。
注意事项
- 确保测试集图像命名与官方一致
- 检查结果文件格式是否符合DOTA要求
- 对于大型测试集,建议在GPU环境下运行
- 注意内存管理,特别是处理高分辨率遥感图像时
通过以上步骤,用户可以顺利完成MMrotate在DOTA-1.0数据集上的推理和结果提交工作,为进一步的算法评估和比较奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
317
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K