VQ-BeT: 行为生成与潜在动作
2025-04-17 07:46:26作者:齐冠琰
1. 项目介绍
VQ-BeT(Behavior Generation with Latent Actions)是一个开源项目,旨在通过潜在动作生成行为。该项目基于VQ-VAE(Vector Quantized-Variational AutoEncoder)技术,并应用于强化学习环境中。VQ-BeT能够将连续的动作空间离散化,从而更有效地学习策略。
2. 项目快速启动
以下是快速启动VQ-BeT的步骤:
首先,创建一个conda环境并激活:
conda create -n vq-bet python=3.9
conda activate vq-bet
然后,克隆项目仓库:
git clone https://github.com/jayLEE0301/vq_bet_official.git
cd vq_bet_official
接下来,安装依赖:
pip install -r requirements.txt
或者,你可以使用以下命令代替:
sh install.sh
安装MuJoCo和D4RL:
cd d4rl
pip install -e .
cd ..
cd vq_bet_official
对于UR3环境,你需要安装UR3环境:
cd envs/ur3
pip install -e .
cd ..
最后,如果需要启用日志,请登录wandb账户:
wandb login
或者,如果你想禁用日志,可以设置环境变量:
export WANDB_MODE=disabled
3. 应用案例和最佳实践
预训练VQ-VAE
在预训练Residual VQ之前,你需要设置配置文件:
config_name="pretrain_[env name]"
然后运行预训练脚本:
python examples/pretrain_vqvae.py
训练和评估VQ-BeT
在训练VQ-BeT之前,首先确保你的配置文件中包含了预训练的Residual VQ路径:
vqvae_load_dir: YOUR_PATH_TO_PRETRAINED_VQVAE/trained_vqvae.pt
然后设置配置文件并运行训练脚本:
config_name="train_[env name]"
python examples/train.py
对于视觉观察环境,你需要设置visual_input: true在你的配置文件中。
使用预训练权重
如果你想快速查看VQ-BeT在目标条件厨房环境上的表现而不需要从头开始训练,可以下载预训练的Residual VQ和VQ-BeT权重,然后按照上述训练步骤加载权重进行评估。
4. 典型生态项目
VQ-BeT可以应用于多种强化学习环境,包括但不限于PushT和Kitchen环境。开发者可以基于VQ-BeT框架,为不同的任务定制自己的环境,从而扩展VQ-BeT的应用范围。此外,VQ-BeT的社区也在不断增长,提供了多种工具和脚本以帮助新用户快速入门和开发。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
302
2.65 K
Ascend Extension for PyTorch
Python
131
153
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
457
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
610
196
React Native鸿蒙化仓库
JavaScript
230
307
暂无简介
Dart
593
129
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
613
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
48
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.44 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205